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ABSTRACT: Monte Carlo simulations are used to inves-
tigate the mechanism of the disorder-to-order phase transition
for a bulk system of colloidal hard cubes. It is observed that
the structure of the ordered state is foreshadowed in the
disordered state through multiple spontaneously occurring
ordered domains. Such domains arise due to the entropic
preference for local facet alignment between particles and
occur transiently and sparsely throughout the system even in
the stable isotropic phase. At pressures (and degrees of
supersaturation) where the isotropic phase becomes margin-
ally metastable, a classical nucleation process is never observed; instead, the ordered domains increase in number and size,
eventually reaching a critical point where they percolate the entire system and spontaneously consolidate to form the ordered
phase. The critical number of particles and the per particle free-energy barrier both decrease with pressure. Using the total
number of locally ordered particles as a global order parameter, it is predicted that for large systems the ordering transition
would only be spontaneous above a critical pressure. Finally, a test designed to probe the ability of the system to favor a single
monodomain solid from initially misaligned-ordered domains, reveals that an active interdomain zone mediates the concerted
reorientation of particles.

1. INTRODUCTION

Microscopic colloidal particles can self-assemble into complex
mesoscale structures1 whose characteristics are dictated by
individual features of the particles, such as size, shape, and
specific interparticle interactions.2 With recent advances in our
ability to synthesize nanoparticles with precise control over
those individual features, a concurrent interest has bloomed to
understand the design principles to engineer desired behaviors
out of such customizable components.3 Not only can such a
design be of practical importance but it can also reveal general
principles about the way how naturally occurring systems self-
assemble into exquisitely complex microstructures.4

It has long been known that entropic effects5 alone can
result in the self-assembly of hard spherical particles into a
close-packed lattice.6 Oblong hard particles and rods, which
possess additional orientational degrees of freedom, result in
the formation of different ordered states, such as nematic
phases with aligned particles, where the loss of orientational
entropy is compensated by a gain in translational entropy.7 A
further level of particle shape complexity has been explored by
considering faceted particles, such as polyhedra,8,9 where their
additional orientational degrees of freedom can lead to the
formation of different types of crystals and mesophases (thus
called for they are neither completely disordered (isotropic)
nor completely ordered (crystal)). To control the emergence
of these phases in polyhedral systems10,11 it is important to
study and characterize not only their thermodynamic behavior
but also the mechanisms underlying disorder-to-order phase
transitions. Similar to hard spheres,12,13 the transitions

involved are often first-order transitions,14 comprising
nucleation and growth of the incipient phase from a metastable
mother phase. Recent studies15−17 have revealed several design
rules for engineering the particle shape to control the ease of
self-assembly. For example, it was observed15 that for several
polyhedra with small asphericity and high rotational symmetry,
translationally ordered rotator phases nucleate from the
disordered state with a smaller free-energy barrier than that
observed for hard spheres at a comparable degree of
supersaturation (DSS). This trend was attributed to the
presence of productive correlations between local orientational
order and translational order, which catalyze the isotropic-to-
rotator phase transition. Recently, it was reported16 that even
though similar local fluctuations in orientational order are
ubiquitous for other polyhedral shapes, their effect is only
catalytic when the final-ordered phase comprises configura-
tions with extensive facet alignment between neighboring
particles. This is because the excluded volume for a pair of
neighbor faceted particles tends to be minimized, and the local
packing entropy maximized, if their facets align. Because such
high local entropy configurations spontaneously occur in the
disordered phase, systems whose solid phase exhibits high facet
alignment (like truncated octahedra and rhombic dodecahe-
dra) will tend to have lower transition free-energy barriers than
systems whose solid phase exhibits no such facet alignment
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(like octahedra). In fact, the latter systems will even tend to
have higher transition free-energy barriers than hard spheres
since the spontaneously occurring facet-aligned configurations
in the isotropic phase are counterproductive toward forming
the solid phase. Thus, the extent of “coherence” between local
vs global packing tendencies of such polyhedral systems during
phase transition can lead to facilitated or impeded self-
assembly.
In this work, we explore the disorder-to-order transition

mechanism of hard cubes, an archetypal case of a system that
exhibits strong coherence between local and global packing
tendencies during ordering. Because hard cubes have equal
facets and the ordered phase entails perfect facet alignment, it
is expected that cubes would be one of the easiest systems to
self-assemble. Cubes have been shown to possess an interesting
phase behavior (see Figure 1) with a disordered liquid phase at
low pressure, a simple cubic crystal at high pressures, and a
cubic mesophase in between that merges continuously with the
crystal phase.8 This cubic mesophase could be seen as a state
where the crystal phase contains a high concentration of
mobile vacancies; in fact such vacancies have been described as
key contributors to the crystal stability18 and to result in
diffusivities that are much larger than those of typical solids.
For simplicity, we will henceforth refer to such mesophase
state as “solid” or ordered phase.
The rest of the paper is organized as follows. In Section 2,

we explain our model, simulation methods, and analysis
techniques, including the order parameters used to track the
progress of the transition. In Section 3.1, we analyze what
happens when the isotropic phase spontaneously transitions
into the crystal phase, revealing that a significant portion of the
isotropic phase has particles that are in a locally ordered
configuration. In Section 3.2, we further characterize the phase
transition using umbrella sampling (US) to determine the free-
energy barriers associated with different degrees of meta-
stability of the disordered phase. In Section 3.3, we describe a
computer experiment intended to illustrate the ability of cubes
to resolve grain boundary conflicts through co-operative
rearrangements. Finally, in Section 4 we provide our
concluding remarks.

2. METHODS

2.1. Model. For a given pair of cubes i and j, we use the
hard pair potential given by

l
moo
n
ooU

0 if no overlap

if overlapij =
∞ (1)

The overlaps between any two cubes are detected using the
separating axis theorem.19

2.2. Metropolis Monte Carlo (MC). Metropolis6 Monte
Carlo (MC) simulations were performed in an isothermal−
isobaric (NPT) ensemble where the number of particles (N),
the pressure, and the temperature of the system were kept
constant. As per the conventions used in our previous studies,8

the dimensionless pressure is p = βpaac
3, where pa is the actual

unscaled pressure and ac is the radius of the circumscribing

sphere for a cube (for a cube of unit edge, it would be 3
2
) and

β = 1/kBT with kB = Boltzmann constant. Simulations were
conducted using periodic boundary conditions, and each MC
cycle consisting of N translation, N rotation, and 2 isotropic
volume moves. Each move was accepted based on the
Metropolis acceptance criteria. For each pressure, at least 3
× 106 MC cycles were performed. All simulations were
performed in a cubic box, and all system sizes had a perfect
cube number of particles. For our ensuing discussions, we take
the order−disorder phase transition of hard cubes to take place
at p = pco = 4.0 as estimated in the literature.18 We note,
however, that this value is only referential as the effective pco in
simulation will depend on system size, given the non-negligible
finite-size effects known to particularly affect the ordered
phase.18

2.3. Order Parameters. 2.3.1. q4 Local Translational
Order Parameter. We use the q4 Steinhardt

20,21 translational
order parameter defined as follows: for every particle i, the
local bond-order parameter, ql,m(i) is

q i
N i

Y( )
1
( )

( , )l m
j

l

l m i j i j,
b 1

, , ,∑ θ ϕ=
= (2)

where Nb(i) is the number of neighbors of particle i, Yl,m(θ, ϕ)
are the spherical harmonics, θi,j and ϕi,j are polar and azimuthal
angles between particle i and its neighbor j, respectively, l is the
symmetry index, and the value of m ranges from −l to l. In this
work, we use l = 4 to characterize cubatic order, henceforth
using the symbol q4 to refer to the collection of all 9
components (2l + 1 = 9). The neighbors of particle i are those
particles whose centers of mass are within the cutoff distance rc
= 1.4σ of particle i. The translational order correlation between
particle i and its neighbor j, dq(i, j) is given by

Figure 1. Sample snapshots of the disordered (left) and ordered (right) phases in hard cubes near the disorder−order transition.
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where the asterisk (*) denotes the complex conjugate.
2.3.2. i4 Local Orientational Order Parameter. To study

local orientational order, we use the i4 order parameter22 that
captures the symmetry in orientations of cubes in the ordered
phase. It is defined in a very similar manner as q4, but instead
of using the bond orientation vectors between two neighboring
particles it uses the angles associated with individual particle
axes orientations. In its normalized form, it is evaluated for a
given particle j as

i j
Y

Y
( )

( , )

( , )
m

n m n n

m n m n n

4,
1

3
4,

4
4

1
3

4,
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θ ϕ
=

∑

∑ ∑

=

=− = (4)

where Y4,m(θn, ϕn) are spherical harmonics with symmetry
index 4 and θn and ϕn are polar and azimuthal angles of the
three-particles axis n with respect to the reference coordinate
frame. Analogous to translational order, the orientation
correlation between two particles k and l is defined as

d k l i k i l( , ) ( ). ( )i
m

m m
4

4

4, 4,∑= *
=− (5)

where the asterisk (*) denotes complex conjugate. Although
we primarily use di to detect local correlations of neighboring
particles for most of our calculations, we also use it in Section

3.1 to obtain the orientation correlation function over distance,
di(r), which is the average value of di(k, l) overall pairs of
particles {k, l} whose centers lie at a distance r from each other.

2.3.3. Labeling of Ordered Particles. The orientational
order parameters i4 and di(k, l) are used to identify ordered
particles; the rationale for this choice is discussed in the
Section 3. Two particles k and l within the first neighbor cutoff
distance rc = 1.4a are defined as connected if di(k, l) > 0.7. A
particle with at least three connections is classified as ordered
or solidlike. Solid clusters are identified by the condition that
any two solidlike particles within rc belong to the same cluster.
The tunable parameters for the order parameters are set using
criteria described in prior studies15,23 for discriminating the
disordered and ordered states; details on these calculations are
provided in the Supporting Information (SI) (Figure S1).

2.3.4. P4 Global Orientational Order Parameter. To obtain
an overall measure of orientational order among N particles,
we used global orientational order parameter, P4 defined as

P
N

P

N

u nmax
3

14
( )

max
3

14
(35 cos 30 cos 3)

n
i

i

n
i

i n i n

4 4

4
,

2
,

∑

∑ θ θ

= ·

= − +
(6)

where ui is the unit vector along a relevant particle axis and n is
a director unit vector which maximizes P4 (see details in John
et al.24) and θi,n is the angle contained by ui and n. The
summation is performed overall three axes for all N particles. A
value of P4 = 1 describes perfect orientational order.

Figure 2. Contour plots for neighboring particle pair correlations, as the system transitions from disordered (a) to ordered (d) state. dq captures the
translational correlation and di the orientational correlation for a system of 1728 particles at p = 4.07. Frequency increases from blue to yellow. The
equilibrium disordered phase (a) contains a non-negligible population of particles pairs that are near the same region of phase space that is
frequented by the ordered state (d). The system transitions through stages (b, c) where the population of ordered pairs becomes more significant.
In the ordered state, all particles populate the top-right corner (d).
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2.3.5. Particle Orientation Scatter Plot. Particle orienta-
tions can be visualized by plotting as dots on the surface of a
unit sphere, the unit vectors corresponding to the orientation
axes of all or a selected subset of particles in the system (see SI
in Agarwal et al.).8 The resulting plot reveals how correlated
(clustered dots) or uncorrelated (diffused dots) those particle
orientations are, e.g., in the perfect cubic crystal, all
orientations will fall within six mutually orthogonal spots on
the sphere, whereas in a fully isotropic phase the orientation
dots will appear uniformly spread out over the whole spherical
surface.
2.4. Umbrella Sampling (US). Umbrella sampling (US)

simulations15 were performed to determine free-energy
barriers for the ordering transition. The total number of
ordered particles (Nordered) in the system was chosen to be a
suitable reaction coordinate to describe the disorder−order
transition, as preliminary results revealed that the solid phase
did not emerge from a single nucleus, but rather from multiple
regions in the entire system. The transition path along Nordered
from the disordered to the ordered state was divided into
overlapping equal-sized windows. The size of each window was
varied depending on the conditions and the size of the system.
Each window is simulated separately with reflective walls, and
Nordered was recorded every 2 MC cycles. Reflective walls are
implemented such that any trajectory leaving the window at
the end of 2 MC cycles is returned to the configuration prior to
those 2 MC cycles, which is counted again. Statistics obtained
from each window are used to obtain relative free energies for
the Nordered states within a window. Finally, individual sections
are stitched together by matching values in the middle of the
overlap between successive windows, keeping the value for the
most frequent state in the disordered phase as the reference
(zero point) for the calculation of the free-energy barrier ΔG*,
as described in earlier work.15,16,25 Values of ΔG* are scaled
with respect to kBT. We also implemented a version of US that
allows mapping the free-energy surface over 2 order
parameters despite using only a single-order parameter to
bias or “drive” the simulations; this is done by concurrently
book keeping a second “passenger” order parameter,26 as
further detailed in the SI (Figure S3).
2.5. Facet Alignment Measure. To quantify the degree of

facet alignment between a pair of neighboring cubes i and j, the
facet alignment measure Δ(i, j) introduced in an earlier study16
was employed. In essence, Δ is the overlap area of the nearest
interparticle facets (defined by the minimum centroid to
centroid distance) when one is projected onto the other. This
measure and its implementation have been described in detail
in a previous study.16

3. RESULTS AND DISCUSSION
3.1. Spontaneous Phase Transition. Defining the degree

of supersaturation (DSS) as the difference in chemical
potentials between the isotropic and the solid phase,13 the
disorder-to-order first-order phase transition is spontaneous
and the disordered phase metastable when DSS is positive.
Such transitions are often characterized as following the
mechanism of nucleation and growth27,28 at low DSS (less than
2kBT

25), eventually leading into a spinodal decomposition
regime at very high supersaturation.29 In this study, we are only
considering cases where DSS is much less than 0.1kBT, for
which a nucleation mechanism would be expected.
Upon compression of an isotropic system with stepwise

pressure increments (starting with p = 1), we observe a

spontaneous disorder-to-order transition at p = 4.07. The
distribution of orientational and translational correlations is
shown in Figure 2 as the transition progresses. It can be seen
that the distributions of ordered and disordered particles are
farther apart along di than along dq, indicating that the
orientational correlation is a better metric to discriminate
between the two states. We observed that even at coexistence
(p = 4.0), there is a non-negligible fraction of particles that are
significantly more correlated than most particles in the
disordered phase and experience a local environment that is
akin to that of the ordered state. This amount of locally
ordered particles is uncommon among polyhedral systems, for
example, in case of octahedra16 the population of such particles
is comparatively small, as seen in Figure 3. Of course, any such
comparison provides only a rough guide since the count of
ordered particles depends on the order parameter used.

We examined the spatial distribution of the locally ordered
particles in the disordered phase to see if a large consolidated
nucleus is distinguishable as the signature of a nucleation
process as has been observed in other polyhedral particles.15,16

Our clustering algorithm revealed that this is not the case;
indeed, these particles were almost always sparsely distributed
throughout the bulk disordered phase. For example, while
about 4% of particles are ordered for pco = 4, only 1/10th of
them are consolidated in the largest cluster. Even during the
disorder-to-order transition, we observe that the increase in the
total number of ordered particles precedes their consolidation
into a single spanning cluster (Figure 4a). In the metastable
isotropic basin, we observe that clusters of ordered particles are
largely uncorrelated as shown in Figure 4b for a sample
configuration and its corresponding spherical scatter plot for
the orientation particle axes. As the transition progresses
toward the ordered phase and 13% of the particles are ordered,
we find that the clusters become more correlated, as evidenced
in the scatter plot and snapshot of Figure 4c. In this case, we
clearly see that the scatter plot has the characteristic symmetry
with six orthogonal clusters. To further characterize this trend,
we show in Figure 5 the distance-dependent orientational
correlation function of the ordered particles, di(r), during a
transition at p = 4.05 for N = 8000 particles. When only 6% of
the particles are ordered, the correlation decays to a very low
value over a distance of r ∼ 10ac, revealing short-range order.
For a 10.3% of ordered particles, which corresponds to the top
of the free-energy barrier as discussed later in Section 3.2, the

Figure 3. Orientational correlation distributions for (a) cubes and (b)
octahedra16 at liquid−solid coexistence conditions (pco,cubes ≈ 4.0,
pco,oct ≈ 6.93). For cubes (octahedra), 65% (30%) of the particle
population in the disordered phase has configurations occupying the
same di region as the ordered phase.
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particles become correlated over longer distances (i.e., across
the simulation box length). This long-range correlation
becomes even stronger as the fraction of ordered particles
increases (i.e., to 13% as shown in Figure 5). Further, using an
US calculation with the greatest cluster size as order parameter
(which would be the appropriate reaction coordinate for a
nucleation process) readily encounters multiple clusters of
similar sizes coexisting in the system. This observation, which
was common to simulations at all DSS values tested and for
different definitions of solidlike particles making up the nuclei,
indicates that the ordering process does not conform with the
picture of classical nucleation. Hence, instead of the size of the

largest consolidated nucleus, we chose the total number of
ordered particles as an appropriate order parameter for this
transition. Indeed, we find that such ordered particles occur
spontaneously at a given pressure (see Figure 6), with their

number increasing as the system’s density slowly rises. For a N
= 1728 system, compression from the isotropic state results in
a sudden jump in Nordered at p = 4.07, while expansion from the
ordered crystal results in a sharp drop in Nordered at p = 3.90.
These results are only illustrative as the extent of hysteresis in
the observable transition pressures around pco depends on
system size and the length of the simulation runs.
One contributing factor toward the presence of ordered

domains in the disordered phase is the tendency of
neighboring particles to align facets16 (see Figure 7). Since
the final-ordered structure has a very high population of facet-
aligned particles compared to the disordered phase, it is
expected that those local configurations in the latter with high
facet alignment (high Δ values) would bear an imprint of the
final-ordered structure. Since facet alignment is locally
favored,16 a local configuration that is disordered in di, but
has a typical Δ ≈ 0.5 would be more likely to transition into an
ordered configuration (di > 0.75, Δ > 0.7). This is in contrast
with the case of octahedra,16 for which it was found that high-

Figure 4. (a) Variation in number of ordered particles (Nordered) and
largest cluster sizes (NI: largest, NII: second largest, etc.) during a
spontaneous transition at p = 4.07 and N = 1728. A steady increase in
Nordered precedes a rise in the size of the largest cluster NI (after 2 ×
105 MC cycles). Before the consolidation, the relative size of various
clusters is comparable (inset). ϕ (black line) is the volume fraction of
the cubes. (b, c) Visualization of ordered particles at two points
during the transition: when 6% ((b), 2.1 × 105 MC cycles) and 13%
((c), 2.1 × 105 MC cycles) of the particles are ordered. The 10 largest
clusters are shown on the right, each with a different color that
corresponds to those used in the scatter plot of particle orientation
axes shown on the left.

Figure 5. Mean di orientational correlation as a function of
interparticle distance (r) for all of the ordered particles in a system
at various percentages of ordered particles. Results for p = 4.05 and N
= 8000 for cubes of side of two units of length.

Figure 6. Number of spontaneously ordered particles (Nordered) as a
function of pressure (p) for a system of 1728 particles. Data points for
compression from the isotropic phase in red and for expansion from
the isotropic phase in blue. Error bars, representing 1 standard
deviation from the mean, are shown as vertical bars on each point (as
illustrated in the legend).
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Δ disordered configurations hinder the ordering into the solid
phase whose intrinsic low-Δ necessitates low-Δ configurations
to precede the nucleation of translational order.
CNT is unsuitable to describe the present ordering

transition as it neglects internuclei interactions and supposes
bulk-average interfacial properties, assumptions that are
inconsistent with the observed physical picture. Indeed, for
all DSS values tested hard cubes order via multiple
spontaneously forming and spatially interacting nuclei, whose
small size and irregular, fluctuating shapes create effects that

are not properly accounted for by just the bulk-average values
of interfacial area and tension.
Thus, we hypothesized that at any given pressure above pco

an initially isotropic phase contains a certain fraction of
particles forming multiple scattered ordered domains, which
will increase as the ordering transition proceeds until such
domains interact and consolidate. Such consolidation reduces
the interfacial area and thus would be thermodynamically
favored.

3.2. Free-Energy Barriers. Figure 8a shows the US results
for the free-energy profile at p = 4 for a system of 1000

Figure 7. Contour plots describing the distribution of particle neighbor pairs over the orientational correlation (di) and facet alignment measure
(Δ). The population moves toward a higher facet alignment as system goes from the disordered (a) to the ordered state (b). System of N = 1728
hard cubes at p = 4.

Figure 8. Umbrella sampling (US) calculations at p = 4 for N = 1000 particles. (a) ΔG profile along Nordered; disordered-phase basin is centered
around Nordered = 38. The top of the barrier corresponds to Nordered* = 103. The gray shaded regions represent error bars from the US calculation. (b)
Relative proportion of ordered particles present in the largest cluster, averaged over each US window. A minimum occurs for Nordered ∈ [30, 55],
which precedes the inflexion point in (a) Nordered ∼ 60. (c) Global tetratic orientational order (P4) for the ordered particles as the transition
progresses, averaged over each US window. Orientational order increases more rapidly for Nordered ∈ [55, 103], likely due to the different ordered
domains realigning as they merge. (d) Two-dimensional ΔG landscape with respect to Nordered and specific volume (v).
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particles. We observe that there is a well-defined well within
which the disordered phase exists with about 38 “ordered”
particles (3.8% of total) present on average at a given time.
Using US, we bias the system to explore rarer states with
higher values of Nordered. Eventually, we find that we attain a
critical state, beyond which the system would be more likely27

to spontaneously reach the ordered phase than the disordered
phase. Figure 8b further shows that, overall, consolidation of
the ordered domains increases with Nordered. There exists,
however, an initial decrease in the fraction of consolidated
particles with Nordered, indicating a regime where the ordered
domains can grow while still being sufficiently dilute to avoid
significant mutual interactions. Note that the Nordered value
where the free-energy profile in Figure 8a has an inflexion
point is close to where the minimum in Figure 8b occurs (i.e.,
Nordered ≈ 55). At this point additional ordered domains can be
added to the system without any consolidation, which is
unfavorable due to a concomitant increase in interfacial area.
This is different from the behavior in the middle of the
isotropic basin (Nordered = 38) where the number of domains
decreases with Nordered. For Nordered > 55, however, such
merging of domains likely entails smaller changes in interfacial
area so that the addition of newer domains leads to
progressively smaller free-energy increments. Interestingly, we
find that even as the orientational correlation P4 (Figure 8c)
among the ordered particles gradually increases with Nordered,
the increase is particularly rapid during this region of
consolidation (55 < Nordered < 103). Interestingly, at the top
of the free-energy barrier (Nordered ≈ 103) less than 20% of all
ordered particles have been consolidated into the largest
cluster; the fact that the free energy decreases thereafter
suggests that any further increase in Nordered involves a net
reduction in interfacial area, i.e., consolidation reduces its value
more than new ordered particles can increase it.
Since the system undergoes a significant change in specific

volume (v) during the transition, we examined the relation
between v and Nordered by concurrently obtaining statistics for v
while mapping the free-energy landscape via US.26 The
resulting free-energy surface, shown in Figure 8d, reveals that
Nordered and v are strongly correlated (within error bars, we
obtained the same free-energy landscape when v is used as the
primary order parameter in US, whereas Nordered is the
passenger order parameter). We also performed another US
simulation run in a reverse order (going from order to
disorder) using the same Nordered as order parameter, and we
found the that the free-energy barrier heights (from the
disordered basin to the barrier top and from the ordered basin
to the barrier top) were essentially the same as those found in
the forward direction, indicating that this order parameter
samples a reversible path across the transition. The values of
the barriers determined from the two-dimensional free-energy
surface of Figure 8d or from the one-dimensional free-energy
profile of Figure 8a are nearly identical and thus we use the
results from the latter approach for concreteness. The
suitability of Nordered as order parameter for the transition-
state region (around the free-energy barrier top) was further
confirmed via the histogram test for the committor probability,
as described in the SI (Figure S2).
To see whether the ordering transition is well described via a

bulk phase property, we performed US calculations of the free-
energy barrier ΔG* for various system sizes using Nordered as
order parameter. Figure 9 shows that for a given pressure, both
properties scale linearly with system size N, and that the slope

for a given pressure in Figure 9a, which would be equivalent to
an “intensive” free-energy barrier Δg* in Figure 9a, inset, and
to a fraction of ordered particles xordered* in Figure 9b, inset,
both remain nearly constant with N and decrease with
pressure. Our hypothesis was that if the transition is a global
or bulk process, both ΔG* and the critical number of ordered
particles (Nordered* ) should scale linearly with respect to N (i.e.,
they would behave as “extensive” properties) with a prefactor
that would be distinct from that expected for a nucleation
process. Indeed, at the point when a classical nucleus of critical
size Nc* occurs, the total number of ordered particles in the
system would be expected to follow a relation of the form

N n N x Nordered c ordered
iso* = * * + (7)

where xordered
iso is the fraction of ordered particles in the

background, isotropic phase at the given DSS and n* is the
number of nuclei of size Nc* in the system, which at

equilibrium is given by ∼N e−(ΔG*/kBT). Clearly, n* < 1 for a
large barrier (say ΔG* > 10kBT) and the system sizes used
here 103 ≤ N < 104, but n* = 1 if a nucleus of size Nc* is
present. It follows then that for such nucleation scenario

Figure 9. Free-energy barriers for the disorder-to-order transition at
various pressures and system sizes (N). (a) Scaling of free-energy
barrier (ΔG*); the slope of the lines can be interpreted as an intensive
free-energy barrier Δg* which is shown in the inset for various
pressures (p), along with a linear fit (dotted line). (b) Scaling of
critical number of ordered particles. Inset: the fraction of ordered
particles at the critical point (xordered* , squares) and in the isotropic
basin (xordered

iso , triangles); colors correspond to the pressures in the
legend.

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.8b06207
J. Phys. Chem. B 2018, 122, 9264−9273

9270

http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.8b06207/suppl_file/jp8b06207_si_001.pdf
http://dx.doi.org/10.1021/acs.jpcb.8b06207


x N N x/ordered ordered ordered
iso* = * ∼ (8)

As shown in the inset of Figure 9b, xordered* ∼ 0.1, a value
significantly larger than xordered

iso ∼ 0.04 for the pressures
considered, a disparity largely independent of N. Hence,
although Nordered* would increase linearly with N even if the
transformations were to proceed via nucleation, the calculated
slope xordered* is inconsistent with such an interpretation. Note
that our results are also inconsistent with a linear percolation
behavior where Nordered* would be proportional to N1/3.
We note that as N increases at fixed p (>pco) any long-range

correlations that may have enhanced the stability of the
ordered phase is weakened, leading to an increase in pco, a
reduction in (p − pco) and DSS, and hence to an increase in
ordering transition barrier ΔG*. However, such finite-size
effects are expected to be significant only for small system sizes
N < 103 particles,30 and be rather negligible for the range 103 ≤
N < 104 under consideration (and unlikely to lead to a linear
scaling ΔG* ∝ N). Note also that when the top of the free-
energy barrier is reached most of our systems (∼90%) are still
in the isotropic phase where such finite-size effects are
minimal. We hence argue that the linear scaling on N that
we observe for Nordered* and ΔG* are most consistent with a
transition having a bulk-like behavior.
We further conjecture that the extrapolation of Δg* to zero

would mark a characteristic pressure (pc) at which the ordering
transition would be unrestricted (i.e., barrier-less). Our linear
extrapolation (see Figure 9a, inset) indicates that pc ≈ 4.08,
corresponding to DSS ≈ 0.03. From a physical point of view,
Δg* > 0 implies that in the large system limit (relevant to
macroscopic experiments), the transition would be kinetically
arrested. Only after the pressure is larger than a critical
pressure (pc) at which Δg* ≤ 0 can a spontaneous transition
be kinetically viable. It should be pointed out, however, that
our estimate of pc is based on Δg* values extrapolated from
relatively small systems (Figure 9a) that neglect the potential
contributions to the transition of density and ordering
fluctuations occurring over lengths scales larger than the
simulation box size, implying that pc ≈ 4.08 would be an
overestimation.
The fact that cubes order via a process quite different from

the nucleation mechanism that has been observed for other
polyhedra (at comparable DSS),14 including some from the
truncated cube family,15 could be traced to the unique
characteristic of the mesophase-like solid that cubes form
near the disorder−order transition (i.e., for 0.5 < ϕ < 0.55). As
discussed in Section 1, such a solid phase could be seen as a
mesophase not only because it contains an unusually large
fraction of vacancies (∼6.4%) for a crystal, but also because
those vacancies are mobile and delocalized, spreading out over
multiple lattice sites.18 Indeed, the diffusivity of cubes is much
larger than that of other polyhedra8 or hard spheres in their
solid states (near the ordering transition), which reflects the
fast dynamics around the delocalized vacancies. The mobility
of cubes in a solidlike cluster in contact with a disordered
region is hence expected to be quite high and not too
dissimilar to that of cubes in the disordered phase. The
presence of “crystal” vacancies must amplify density fluctua-
tions in a solid cluster and facilitate interfacial rearrangements,
effects that may translate into a small interfacial tension.
Indeed, the latter would in turn explain the tendency to form
multiple metastable ordered clusters (rather than a single
nucleus) during the ordering transition, despite the concom-

itant increase in interfacial area. Ultimately, the extensive
nature of ΔG* would largely arise from the fact that the
interfacial area needed to consolidate the solid phase increases
with system size.

3.3. Grain Boundary Dissolution. As shown in Figure 4a,
at early stages of the ordering process we always observe the
presence of multiple, independent ordered domains in the
system, which if continued to grow without reorientation,
would give rise to multiple grain boundaries. However, at least
for the pressures and system sizes simulated, we never observe
any (long-lived) polycrystallinity when the system fully
transitions to the solid basin; the system always converges to
a single-grain state. This ability to resolve domain misalign-
ments likely plays a crucial role in facilitating the transition to
the ordered phase. To gain some insight into the process of
grain realignment, we created an artificial configuration
consisting of two misaligned grains for N = 5544, as shown
in Figure 10a. Grain 1 has particles with their faces aligned

parallel to the box vectors, whereas grain 2 is rotated by 45°
along the z-axis (pointing out of the page). We conducted
NPT simulations at p = 5 and tracked the evolution of the
merging process. We observe that as the system is equilibrated,
grain 1 tends to propagate (Figure 10b). However, in the final
structure (obtained after 6 × 106 MC cycles), both grains
attain a final orientation that is intermediate between the
original two orientations, albeit much closer to that of grain 1
(Figure 10c). Replicate simulations (not shown) exhibited a

Figure 10. Dissolution of grain boundaries in hard cubes. (a) The
initial system consists of two grains simulated at p = 5. Grain 2 (right)
is rotated at 45° with respect to grain 1 (left), which is aligned with
the simulation box axes. Cubes are colored based on their alignment:
from blue for vertically aligned to yellow for 45° misalignment. (b)
Grain 2 rotates driven by the facet alignment of particles at and
around the grain boundaries. (c) Finally, the grains resolve into a
single grain whose orientation is close to that of the original grain 1.
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similar behavior, with the final orientation being intermediate,
with varying proximity to the original orientation of either
grain 1 or grain 2. If disparate-sized grains were to meet, the
smaller grain would likely consistently experience the largest
reorientation. The process is vaguely reminiscent of Ostwald
ripening, wherein one grain grows by the gradual dissolution
and particle transfer from another grain, except that in this case
the grains are not dispersed in a solution and can hence “push”
against each other. This capability of hard cubes to reorganize
quickly, even when large grains are involved (as in this
example) helps explain the absence of polycrystallinity in the
ordered phase, as multiple ordered domains would be able to
conveniently merge. Once again, the high concentration of
delocalized (dynamic) vacancies18 and the high particle
mobility8 unique to hard cubes’ solid-phase provide the likely
microscopic mechanisms that facilitate the co-operative
rearrangement of particles near an interface and the
propagation of those changes through the grains. Indeed,
Smallenburg et al.18 found that spontaneous vacancies account
for up to 6.4% (of lattice sites), which is several orders of
magnitude larger than typically seen in colloidal crystals,
including octahedra for which vacancies would not be observed
in typical simulation system sizes (unless purposely implanted,
in which case they would have minimal mobility).

4. CONCLUSIONS
Our analysis of the disorder-to-order phase transition of hard
cubes reveals that due to high level of local facet alignment
occurring in both the ordered phase and (to a lesser extent) in
the disordered phase, there is a high propensity in the latter to
contain small ordered domains. At any given time, such
domains are present in non-negligible quantities, such that the
total number of ordered particles describes the proximity to
the ordered phase better than the size of the largest cluster
alone. Analysis of unbiased simulations reveals that the
transition involves an increase in the number of such domains,
followed by their consolidation. Umbrella sampling calcu-
lations reveal that the free-energy transition barriers obtained
from systems of different sizes are consistent with the view that
the transition happens via a bulk process. Calculation of an
intensive free-energy barrier allows us to extrapolate to a
critical pressure pc above which the transition in a macroscopic
system would take place unhindered and spontaneously. The
absence of polycrystallinity in the solid phase is linked to the
ability of the system to dissolve grain boundaries via co-
operative, correlated motions that propagate through the
grains as demonstrated by the simulation of misaligned grains
that realigned by simultaneously changing their original
orientations. Indeed, ordered domains that spontaneously
arise and come in contact during the disorder-to-order process
readily resolve any grain boundaries, resulting in a final single-
grain ordered phase.
The existence of such a global ordering mechanism for hard

cubes brings up the question about what other systems might
exhibit a similar mechanism. Clearly, truncated cubes with a
small amount of truncation13 or rounded cubes (described via
superball31 or polybead models22) which undergo a similar
transition into a cubic ordered phase should closely approach
the behavior of the hard cubes studied here. More generally,
systems with a strong coherence in their tendencies for local
packing (in disordered phase) and global packing (in ordered
phase) may exhibit a similar mechanism. For practical
applications, it would be of interest to quantify the effect on

the ordering mechanism of soft interparticle attractions21 and
size polydispersity,30 two factors which are ubiquitous in
experimental systems. Further studies can focus on finding
theoretical models that can describe the general features of the
phase-transition mechanism studied here, incorporating the
key elements that we observed in hard cubes, such as a high
concentration of locally ordered particles in the isotropic phase
basin and the proliferation and consolidation of ordered
domains before reaching the solid-phase basin. Also, studies
employing methods designed to sample the disorder-to-order
transition kinetics and rates14,28 would provide complementary
insights into the microstructure changes along transition
pathways.
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