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ABSTRACT: Many hard faceted nanoparticles are known to
undergo disorder-to-order phase transitions following a classical
nucleation and growth mechanism. In a previous study [J. Phys.
Chem. B 2018, 122, 9264−9273], it was shown that hard cubes
undergo a nonclassical phase transition with a bulk character
instead of originating from consolidated nuclei. Significantly, an
unusually high fraction of ordered particles was observed in the
metastable basin of the disordered phase, even for very low degrees
of supersaturation. This work aims to substantiate the conjecture
that these unique properties originate from a comparatively low
interfacial free energy between the disordered and ordered phases
for hard cubes relative to other hard particle systems. Using the
cleaving wall method to directly measure the interfacial free energy
for cubes, it is found that its values are indeed small; e.g., at phase coexistence conditions, it is only one-fifth that for hard spheres. A
theoretical nucleation model is used to explore the broader implications of low interfacial tension values and how this could result in
a bulk ordering mechanism.

1. INTRODUCTION

Recent advancements in chemical synthesis1−3 have enabled an
unprecedented control of the shape and monodispersity of
nanoparticles. Such tailored nanoscale colloids are important as
building blocks for bottom-up materials design4−8 with
potential applications in photonics9 and plasmonics.10,11 In
the absence of strong, ligand- or patch-mediated energetic
interactions, the self-assembling properties of colloidal nano-
particles can be largely traced to their shape and have been
predicted through “hard” particle models, e.g., the formation of
different crystalline structures,12 and mesophases,13−17 and the
occurrence of phase transitions.18−24 To date, many of these
predictions have been confirmed through experiments.1,25−29

Computer simulations have revealed that hard colloidal
nanoparticles often undergo first-order, disorder-to-order
phase transitions in 3D space.18,21,22 One of the first cases
studied through simulations was that of hard spheres,30 which
form a face-centered cubic (FCC) lattice via nucleation and
growth.18,19 Adding anisotropy to the shape of the particle, say
by adding facets, alters the phase behavior by favoring ordered
structures that enhance packing entropy.12,13 As for the phase
transition kinetics, the faceted particles studied thus far have
been found to generally order via nucleation and
growth.21−23,31

Remarkably, simulations of hard cubic nanoparticles reveal
both unusual phase behavior13,32,33 and ordering kinetics.

Upon compression, they form an ordered phase with
orientationally aligned particles arranged in a simple cubic
lattice. Near the phase transition, this ordered phase has an
unusually high diffusivity and concentration of vacancies for a
crystalline phase when compared to that for other particle
shapes. In a recent study24 where the disorder-to-order
transition of hard cubes was tracked and free energy barriers
were mapped via umbrella sampling, we observed that the
kinetic pathway toward ordering was also unusual. Unlike most
other polyhedra that have been studied in the literature,21,22

the phase transition in cubes is not well-described by classical
nucleation and growth. Instead, it undergoes a “bulk-like”
transition behavior with the following features:

I. A large number of sparse, small clusters of ordered
particles are present in the disordered phase. The
concentration of ordered particles increases with super-
saturation and, at a given supersaturation, is much higher
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when compared to other polyhedra that undergo
nucleation and growth.

II. The apparent free energy barrier for the ordering
transition was found to scale linearly with system size,
which would imply that in a system of macroscopic size
the transition would be practically impossible.

III. At no or a minimal degree of supersaturation, a critical
concentration of ordered cubes, rather than a critically
sized ordered nucleus, needs to be attained for the
transition to proceed. During the transition, the fraction
of ordered particles gradually increases, leading to
consolidation of ordered domains and an eventual
transition to the ordered phase.

It is well-established that any stable or metastable phase will
exhibit local fluctuations in structural order where motifs
associated with another phase may occur.34 While these
fluctuations will largely be transient, they will also encompass
the seeds of an incipient (stable) phase as it nucleates and
grows within a metastable phase. Of course, such fluctuations
also exist in a stable phase, albeit these are fewer and too small
to initiate any phase transition. The presence of a significant
fraction of ordered particles in a disordered phase reflects the
ease of creating interfaces in the system, i.e., a small interfacial
free energy between the ordered and disordered phases.
Hence, we hypothesize that the abundance of such fluctuations
that resemble the ordered phase (henceforth simply referred to
as cubatic f luctuations) in the disordered phase of the cubes
could be attributed to a low surface tension. In this paper, we
conduct direct measurements of the interfacial free energy of a
disorder−order interface for hard cubes and compare the
resulting values to those of other hard-core systems. We also
present a mass action-derived classical nucleation theory
(MADCNT) model to qualitatively understand how the
extent of cubatic fluctuations depends on the interfacial free
energy.
The paper is structured as follows: In Section 2, we outline

the implementation of the cleaving-walls method in Monte
Carlo simulations. In Section 3, we present our results and
discuss them in the context of a theoretical model to explore
the consequences of low surface tensions on the concentration
of cubatic fluctuations. In Section 4, we provide a summary
and outlook of our results.

2. METHODS
2.1. Model. For any two cubic particles i and j, we use a

hard pair-potential given by

=
∞

U
0 if no overlap

if overlapij

l
moo
n
oo (1)

The overlap is detected by using the separating axis theorem.35

2.2. Monte Carlo Simulations. We use Metropolis30

Monte Carlo (MC) simulations in either the canonical (NVT)
or the isothermal−isobaric (NpT) ensemble as necessary,
where N is the total number of particles, V is the volume of the
system, p is the pressure, and T is the temperature. We use
scaled units consistent with our previous studies,13 with lengths
scaled by the circumradius (ac) of the polyhedron. Thus, the
dimensionless pressure is given by p = βpaac

3, where pa is the
unscaled pressure and β =

k T
1

B
, where kB is Boltzmann’s

constant. The chemical potential (μ) and free energy (ΔG) are
scaled by kBT, and the dimensionless interfacial free energy is

given by γ = βγaac
2 where γa is the unscaled interfacial free

energy. For a comparison among different particle shapes, we
tried to remove the dependence on the choice of length scale
ac, by defining a reduced dimensionless interfacial free energy
as γ ̅ =

γ
ρs

2/3 , where ρs is the density of the solid/ordered phase.

This definition is identical to that in an earlier study,21 and is
consistent with the dimensionless surface component of free
energy in classical nucleation theory. The supersaturation is
defined as Δμod = μo − μd, where μo and μd are chemical
potentials associated with ordered and disordered phases,
respectively. The coexistence pressure pco for hard cubes under
this scaling is p = 4.0 as reported in the literature.32 The
simulations used periodic boundary conditions to mimic bulk
behavior. Each MC cycle included N translation, N rotation,
and 2 isotropic volume moves (for NpT ensemble runs only).

2.3. Cleaving-Walls Method. 2.3.1. Outline. The
cleaving-walls method used in this study is a Monte Carlo
adaptation of an existing method36 typically implemented
using molecular dynamics simulations. While there have been
several modifications of the method over the years37 to
improve accuracy, we use an early, simple implementation
which proved to be sufficiently accurate for our purposes. To
the best of our knowledge, this is the first implementation of
the method using Monte Carlo simulations.
The method involves three steps:

I. Cleaving: Start from independent simulation boxes of
the two phases at a given pressure (Figure 1a). The two
boxes need to have the same cross-sectional dimensions

Figure 1. Schematic illustration of steps in the cleaving-walls method.
(a) Bulk simulation boxes of solid and liquid phases with three-
dimensional periodic boundary conditions at the desired pressure. (b)
Phases cleaved at the midplanes. (c) Transposed simulation boxes
with dissimilar phases facing each other. (d) Final two-phase state
with the gap closed and the two interfaces created.
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along the cleaving plane and satisfy periodic boundary
conditions. Move the cleaving walls to create a gap in the
midplane of the simulation box such that particles do
not interact across the gap (Figure 1b).

II. Transposition: Rearrange the boxes as shown in Figure
1c to create a larger simulation box with two gaps with
dissimilar phases facing each other.

III. Merging: Recede the two pairs of cleaving walls to close
the gaps, creating two interfaces (Figure 1d).

The interfacial free energy is then defined as the work done
through these steps per unit area of the interface created. Since
the interfacial particles do not undergo any change in energy at
step II, the interfacial free energy γ is given by the following
expression:

γ = +w wI III (2)

Here, wI is the work done per unit area on both systems in step
I, and wIII is the work done per unit area on the transposed
system in step III. The latter is negative and smaller in
magnitude, resulting in a positive value for γ.
The pressure faced by the cleaving wall is measured

throughout steps I and III, and it is crucial to move the wall
very gradually to minimize hysteresis. The values were verified
by also conducting the process in reverse, i.e., by cleavage of an
interface. The initial setup, definition of the cleaving wall, and
pressure calculation are described in the next subsections.
2.3.2. Initial Setup. We performed all the calculations at the

estimated bulk coexistence pressure p = 4.0. As described in
previous studies, the ordered phase of hard cubes at
coexistence was generated by sequential NpT runs of 3 ×
106 MC cycles each, starting from a high pressure (p = 20) and
gradually reducing the pressure to p = 4.0. For the (100)
crystal plane, configurations with N = 1000 were prepared on a
simple cubic lattice aligned with the box vectors of a cubic box.
The configurations presenting the (110) crystal plane were
obtained in a cuboidal box with N = 1024 particles.
To obtain the disordered phase simulation box, the ordered

phase simulation box was melted at p = 1.0 with anisotropic
volume moves along the z-direction (orthogonal to the
cleaving plane) to maintain the cross-sectional (x−y)
dimensions consistent for transposition in step II. The system
was then compressed to p = 4.0 to obtain the equilibrium
disordered phase at coexistence. To circumvent the finite-size
effect of the interfacial region propagating into the bulk-phase
structure, longer boxes with N = 2000 were primarily studied;
these systems were obtained by duplicating the box along the
z-direction, followed by equilibration for 3 × 106 MC cycles.
2.3.3. Cleaving Walls. We implemented the cleaving walls

as hard planes that only interact with the centroids of the
particles (see Supporting Information for discussion on walls
that interact with the full particle shapes). There are two walls,
one which moves in the +z-direction and the other in the −z-
direction. For a given simulation box, both walls start at the
midplane along the z-axis, and particles are disallowed from
crossing the midplane or the wall. A given wall only interacts
with particles in the direction of its movement during step I.
The simulation is conducted in the NVT ensemble, and at the
end of each MC cycle, walls are moved in either direction by
small increments (<10−4, in reduced units) with smaller
increments used in cases where a particle would obstruct the
wall. For example, if a movement of 10−4 would lead to an
overlapping particle, a movement of 10−5 would be considered.
This process is continued until we have achieved a separation

of at least one particle circumradius, ensuring that the particles
do not interact across the gap. Throughout the process, we
output configurations at various separations to perform
pressure calculations as described later.
After transposing the two phases with dissimilar phases

facing each other across the gaps, the two gaps are closed in
small steps corresponding to separations at which the pressure
will be calculated (<10−3). Each time the separation is reduced,
the system is given 103 MC cycles to relax. Eventually, the gap
is entirely closed, and the system has two interfaces of area
equal to the box cross-section.

2.3.4. Pressure and Work Calculation. We calculate the
pressure on the wall using virtual perturbations of the wall
position following similar well-known volume perturbation
methods:38

= ∂
∂

= ⟨ ⟩
Δ

β− Δ
p

F
V V

ln( e )

N T,

Ui
k
jjj

y
{
zzz

(3)

where F is the free energy, V is the volume of box, U is the
configurational energy, and the changes (ΔU, ΔV) are
obtained upon virtual movements of the wall. Let the initial
wall position from the midplane be z and the cross-sectional
area in the xy plane be A. If the wall is moved by δz, then the
change in volume ΔV = −Aδz, and we can write down eq 3 as

δ
= − ⟨ ⟩β− Δ

p z
A z

( )
ln( e )U(z)

(4)

The expression ⟨e−βΔU) ⟩ in our case can be interpreted as the
ensemble-average probability of overlap between the wall and
any particle upon perturbation. For cubes, we generally use δz
= 0.001 (see Supporting Information).
To accurately determine the pressure at a given separation,

we conduct an NVT simulation with the initial configurations
as described previously. Each simulation was conducted for 106

MC cycles, and overlap with a virtual perturbation was checked
every 10 cycles. The statistics thus obtained were analyzed to
calculate the pressure p(z) for steps I and III. Assuming a
reversible process, the work done per unit area was calculated
with the following expression that integrates pressure (force
per unit area on the plane) over the displacement of the wall:

∫=w p z dz( )
z

z

i

f

(5)

where zi and zf are the initial and final distance of the wall from
the midplane. The work per unit area thus calculated was used
to obtain γ using eq 2.

2.3.5. Corrugated Cleaving Walls. To measure the
interfacial free energy of the (110) plane in a hard cube
crystal, we needed to implement corrugated walls37 compatible
with the zigzagging interface; otherwise, the crystal would
spontaneously reorient during the cleaving and merging
processes. Here, we present a simplified implementation for
corrugated walls that only interact with the centroids of the
particles.
Let the plane be corrugated along the y-axis. The corrugated

wall was simulated through a triangular wave given by the
following function for the z-coordinate of the wall (zwall) at a
given y-coordinate and position of the wall z:

λ λ λ λ= − − ∓ +±z y z y z( , ) mod
2 4 4wall, (6)
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where ± refers to different walls based on the direction of
movement during step I, and λ is the wavelength of
corrugation along the y-axis. Note that the position of the
wall z is defined as the z-coordinate of the leading peaks of the
triangular wave facing the direction of movement during step I.
In this way, at z = 0 neither wall interacts with any particle at
the beginning of the simulation.
The final positions of the walls at the end of step I were kept

conservatively at = ± + λ
± ( )z afinal, c 2

to ensure that particles

cannot interact across the gap. The pressure calculations for
the corrugated wall are identical to those for the flat wall. The
wavelength λ is determined by the initial conditions of the
crystal simulation box and was chosen such that the box length
along the y-axis is Ly = npλ, where np is the number of particle
layers along the y-axis. This choice ensures compatibility with
the periodic boundary conditions and cleaves the systems in a
manner conforming with the crystal plane. In principle, this
approach can be generalized to other topographies with an
appropriate wall function.
2.4. Interfacial Potential of Mean Force (PMF). We

calculated the PMF experienced by a free particle interacting
with a perfect interface of particles in a crystalline arrangement.
NVT simulations were conducted comprising a single
immobile layer of crystalline particles and a free particle. The
spacing of the crystalline particles was chosen to be consistent
with the volume fraction of the coexistence conditions.
Statistics for free particle position were obtained through 107

MC cycles. The coordinates of the free particles were
histogrammed with a resolution of 0.05ac. The PMF
experienced at a given bin i is given by

= −
∞

k T
f

f
PMF lni

i
B

i

k
jjjjjj

y

{
zzzzzz (7)

where f i and f∞ are the visiting frequencies for the ith bin and a
distant bin where the particle is not interacting with the
immobile particles, respectively. The statistics were sufficient
to obtain states with PMF ∼ 7 kBT. For comparison across
different systems, the “effective” position of the interface was
chosen to correspond to the point where PMF = 5 kBT.

2.5. Measurement of Interfacial Thickness. We
estimate the thickness of the interface using the final
configuration at the end of step III of the cleaving process.
The interface thickness δ is defined in a manner analogous to
phase field models:39

ϕ
δ

= +z
z

( )
1
2

1 tanh
2

i
k
jjj

y
{
zzz (8)

where ϕ is a scalar order parameter and z is the position with
respect the interface. For our analysis we define ϕ as

ϕ
ρ ρ
ρ ρ

=
−
−

z( )s

s l (9)

where ρs, ρl, and ρ(z) are the densities of the bulk solid, bulk
liquid, and system at position z. Thus, ϕ = 0 for the bulk solid,
and ϕ = 1 for the bulk liquid. The starting interfacial
configurations are simulated further for 106 MC cycles in an
NVT ensemble to obtain statistics for ϕ(z). Equation 8 is fitted
to the z vs ϕ(z) data using a least-squares method to obtain δ,
which is reported in circumradius units (ac).

3. RESULTS AND DISCUSSION
3.1. Interfacial Free Energy. The calculation was carefully

performed to ensure that the process does not significantly
alter the bulk behavior of either phase (e.g., by ordering of the
disordered phase or disordering of the ordered phase). The
process was conducted for various system lengths, and it was
observed that the cleaving process influences the structure of a
layer ∼3 particles deep into the bulk phases. Hence, a system

Figure 2. Cleaving walls for hard cubes (100) plane at coexistence pressure p = 4.0. (a) Sample configuration at the end of step III. Ordered and
disordered phase particles are colored blue and red, respectively. Intermediate configurations at other steps are shown in the Supporting
Information. (b, c) Pressure variation with the position of the cleaving walls with respect to the midplane (quantifying the gap width) for (b)
ordered and (c) disordered phase. Step I (cleaving) is shown with a solid line, and step II (merging) is shown with gray line. Scaling for the axes is
described in Section 2.2.
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size of N = 2000 particles (∼20 layers) on each phase was
chosen. A sample configuration at the end of step III for the
case in which the interfacial plane faces the (100) crystal plane
is shown in Figure 2a. Intermediate configurations at other
steps are shown in the Supporting Information. The pressure
profiles for cleaving and merging cubes at coexistence pressure
pco = 4.0 are shown in Figure 2b,c for the ordered and
disordered phase, respectively.
The interfacial free energy for the (100) orientation of the

ordered phase was determined as γ100 = 0.042 ± 0.007.
Attempts to calculate the interfacial tension for the (110)
orientation γ110 with a flat (i.e., noncorrugated) cleaving wall
resulted in the ordered phase reorienting in the (100) direction
upon merging. This rapid reorienting is rather unique to cubes
as we have tested a variety of orientations of other polyhedral
crystals without facing the same problem. There could be
several reasons for this. The tendency to reorientation
indicates that γ100 < γ110, so that the system relaxes toward
the more stable interface. The short time scale of this process is
likely facilitated by the unusually high diffusivity13 and vacancy
concentration32,33 in the ordered phase for cubes. Fast crystal
domain reorientation is consistent with our observations in a
previous study24 that hard cubes exhibit fast grain resolution
dynamics. Also, because the disordered phase is cleaved by a
flat wall, the cubes in the closest layers tend to align parallel to
it, which in turn tend to realign (flatten) the closest zigzag
(110) layer of the ordered phase during the merging step. This
limitation was resolved with implementation of a corrugated
cleaving wall37 as described in Section 2.3.5. This approach
allows for the disordered phase to be cleaved with a zigzag
presentation of the particles compatible with the (110) crystal
plane. The final configuration with (110) interfaces at the end
of step III and pressure profiles for both phases are shown in
Figure 3.
The interfacial free energy for the (110) orientation of the

ordered phase was determined as γ110 = 0.090 ± 0.010. This

value is more than twice γ100, confirming that this difference is
the main force driving the crystal reorientation with a flat wall
observed earlier. The physical reason for why γ100 < γ110 can be
rationalized by examining the entropic and enthalpic effects
associated with the particles in the disordered region in contact
with the different ordered planes, to be referred to here as the
wetting layer. The pV component of the enthalpy (and free
energy) favors smaller volumes or denser packing (due to
closer contact) of the wetting layer; likewise, a more efficient
packing (attained by partial lateral alignment) would favor
packing entropy of that layer. As the potential of mean force
(PMF) calculations reveal (Figure 4), the (110) plane
produces a longer-range repulsive field, which is a consequence
of its rougher and more intrusive profile (Figure 4, inset). This
also translates into a thicker wetting layer as shown in Figure 5.
These observations are consistent with a larger free energy

Figure 3. Cleaving walls for hard cubes (110) plane at coexistence pressure p = 4.0. (a) Sample configuration at the end of step III. Ordered and
disordered phase particles are colored blue and red, respectively. Intermediate configurations at other steps are shown in the Supporting
Information. (b, c) Pressure variation with the position of the cleaving walls defined by the leading peak of the corrugated wall (see Section 2.3.5)
with respect to the midplane (quantifying the gap width) for (b) ordered and (c) disordered phases. Step I (cleaving) is shown with a solid line,
and step II (merging) is shown with a dotted line. Scaling for the axes is described in Section 2.2.

Figure 4. Interfacial potentials of mean force (PMF) at coexistence
for various cases. Inset shows two-dimensional PMF surface for the
(110) plane of hard cubes, where crystalline cubes (blue) are placed
in the middle at their fixed positions in the calculation. Details on the
calculation are provided in Section 2.4.
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penalty in the 110 wetting layer, and hence, γ110 > γ100. Based
on these physical considerations, we further anticipate that γ111
> γ110 > γ100.
On the basis of the γ values thus calculated, a Wulff

construction40−43 could be performed to obtain information
about the nucleus geometry. The governing principle of Wulff
construction states that the length h of a perpendicular to a
crystal plane passing through the centroid is proportional to its
interfacial free energy γ. On the basis of this principle, the
perpendiculars of (100) and (110) facets should be related as
h110 = 2.14h100. This relation would put the (110) plane
outside the inner volume enclosed by the (100) plane since

>h h2110 100. This implies that if we restrict ourselves to the
close-packed facets,43 the (110) should not show up in an
equilibrium nucleus geometry. Regardless, since the (100)
facet is the most close-packed43 facet for this crystal, γ100 can
be used as a representative value for comparison across
different shapes.
We use reduced interfacial free energies γ̅ as defined in

Section 2.2 for comparison across different shapes. In most
studies of hard polyhedra, the interfacial free energy has been
calculated indirectly through nucleation free energy barrier
calculations18,21 leveraging classical nucleation theory (CNT).
These approaches are sensitive to the definition of the order
parameter used to ascertain the interface of the nucleus.44

Nevertheless, these indirect estimates for hard spheres are very
much comparable to those obtained from direct methods
including the cleaving-walls approach.45 Hence, we use CNT
estimates for comparison among shapes when results from any
direct method are unavailable.
At coexistence, the value of the reduced interfacial free

energy for the (100) crystal facet in cubes (γ̅100 = 0.088) is
about one-sixth the value for hard spheres (γ̅HS ∼ 0.52 for all
closed packed orientations). For comparison, orientationally
average interfacial free energies reported for polyhedral
particles (at the disorder−order phase transition) have been
at most 20% lower than that of hard spheres (e.g., for
cuboctahedra, truncated octahedra, and rhombic dodecahe-
dra),21 and often higher than that (e.g., for octahedra and
gyrobifastigia).22,23 We illustrate these observations in Figure 6
where we plot reduced interfacial free energy γ̅ at a given
supersaturation Δμod for a number of shapes as reported in the
literature. It is evident that cubes have by far the lowest value
of reduced interfacial free energy, which generally increases
with Δμod.

Physically, the small γ̅ for hard cubes implies a small penalty
for creating solid−liquid interfaces, which correlates with the
observation of a relatively high incidence of ordered and
disordered domains coexisting next to each other in both the
disordered and ordered phases. This results in a significant
concentration of ordered domains in the disordered phase and
hence a high fraction of ordered particles (about 3% at
coexistence compared to less than 0.05% for hard spheres).
Likewise, the high content (>6%) of mobile vacancies in the
solid phase32 connotes some localized liquid-like behavior.
This similarity between some local configurations from its
disordered and ordered phases means that both phases share a
fraction of the same phase space in the terms of translational
and orientational order, which enhances their interfacial
affinity.
The low γ could also be indicative of the proximity between

the binodal and spinodal conditions for cubes, as a zero
interfacial tension is a characteristic of the spinodal point in
other systems.47,48 This hypothesis is strengthened by the fact
that the orientational correlation length diverges with pressure
(see SI). We attempted a calculation of γ for cubes at finite
degrees of supersaturation, but the results were inconclusive
due to large statistical variations associated with a significant
tendency for ordering in the disordered phase. A more
complete picture of the consequences of low γ̅ values is
provided in the next section through a theoretical analysis.
We also examined the effect of a small perturbation to the

cubic shape on interfacial tension by computing γ̅100 for
truncated cubes with truncation parameter16 s = 0.25, hereafter
referred to as TC25. The phase behavior is similar to that of
hard cubes, with a first-order transition from a disordered
phase to a simple cubic crystal. Moreover, the disordered phase
also has an abundance of cubatic fluctuations, and the ordering
transition progresses spontaneously at very low supersatura-
tions. We also calculated the free energy barrier for the TC25
disorder-to-order transition at coexistence through umbrella
sampling as described elsewhere24 (see crucial details in the
Supporting Information). The free energy profile as a function
of the fraction of ordered particles (xordered) at coexistence
pressure for TC25 is shown in Figure 7, along with the

Figure 5. Scalar order parameter ϕ as a function of position with
respect to the interface (z, in circumradius aC units) for two crystal
planes of hard cubes. The interfacial thicknesses of (100) and (110)
crystal planes were found to be δ100 = 1.6 ± 0.2 and δ100 = 2.9 ± 0.3,
respectively. Details on the calculation are provided in Section 2.5.

Figure 6. Reduced interfacial free energy γ̅ at a given supersaturation
Δμod for various shapes (HS, hard spheres; OCT, octahedra; GBF,
gyrobifastigia; CO, cuboctahedra; TO, truncated octahedra; RD,
rhombic dodecahedra; TC25, truncated cubes with s = 0.25, and
cubes) reported in the literature using a variety of methods (CW,
cleaving walls; US, umbrella sampling and classical nucleation theory;
NSP, nucleus-size pinning with classical nucleation theory). Data
sources: HS(CW);37 HS(US);19 HS(NSP);23 OCT(US);22 GBF-
(CW);46 GBF(NSP);23 CO-TO-RD(US);21 cubes and TC25, this
work.
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previously reported24 results for hard cubes. At coexistence, the
free energy barrier for TC25 is over three times larger than that
of hard cubes. While there is no clear theoretical framework
that can describe the exact relationship between γ̅ and ΔG* for
this nonclassical phase transition, the much higher barrier
would indicate a correspondingly higher value for interfacial
free energy. Indeed, we find that the interfacial free energy for
the (100) plane of TC25 using the cleaving-walls method at
the coexistence pressure14 pco = 3.64 is γ̅100,TC25 = 0.194, which
is about 2 times that for hard cubes. Another important
observation is that xordered at both the disordered-state basin
and the top of the barrier is much higher for TC25 compared
to cubes. We note, however, that the order parameter
definitions (see Supporting Information) are not identical for
hard cubes and TC25, and hence, the xordered for the two
systems cannot be unambiguously compared. While the PMF
for cubes and TC25 (associated with the 100 plane) are
expectedly comparable, the densities of the coexistence phases
are higher for TC25 than those for cubes, which would be
expected to increase γ.
An interesting trend in Figure 6 is that particles’ shapes

having a greater similarity to cubes tend to have a lower γ (e.g.,
TC25 and CO). This could reflect the fact that a preference of
local ordered motifs with 6-fold coordination and smaller unit
cells is easier to generate than structures requiring the
coordination for more nearest-neighbor particles (like 8 or
12) and larger unit cells. The low coordination number of
cube-like shapes is a likely contributor to low γ values by
promoting low-free-energy-cost 6-fold configurations in a route
to the ordered phases they form (even if not a simple cubic).
Since no other hard particle is able to order with a smaller
coordination number and unit cell, we surmise that hard cubes
likely possess the lowest γ value of all athermal systems at the
order−disorder transition (note that we exclude the case of
tetrahedra whose isotropic phase does not transition into a
simple-unit-cell solid49).
3.2. Theoretical Quantification of Cubatic Fluctua-

tions. We aim to provide a simple description of how the
fraction of ordered particles (xordered) compounding the local
solid-like fluctuations in the disordered phase is related to γ̅ at
a given supersaturation Δμod. In this model, the cubatic
fluctuations are in the form of nuclei which are noninteracting
with each other and are distributed uniformly throughout the
bulk.50 With ΔG(n) as the free energy change associated with
the formation of an ordered cluster of size n (analogous to n

particles), classical nucleation theory (CNT) provides the
following expression:

μ γΔ = Δ + ̅G n n A n( ) od
2/3

(10)

where A is a geometric factor capturing the shape of the
nucleus assuming that its surface area scales with the two-thirds
power of the volume. For simplicity, we assume that both the
inner and the interfacial regions of a cluster can be described
by μo and γ̅. This is not true for clusters smaller than a
characteristic length, and there are models that could be used
to account for such an effect.51−53 As such, our model will
overestimate xordered if γ̅ is higher for smaller clusters than larger
ones in the system being considered, as has been found to be
the case in hard spheres.54

For steady state conditions for a system evolving from the
metastable disorder-phase basin, the distribution of fraction of
particles xn belonging to clusters of size n can be described by
the law of mass action55 as

= −Δx nx en
n G n
0

( )
(11)

where x0 is the fraction of disordered particles. We note that
such a formulation assumes no intercluster interactions; that is,
the effect of impingements between clusters is neglected so
that each cluster is independent from others and only
surrounded by disordered cubes. Further, the ordered clusters
exhibiting a range of representative sizes are assumed to be
well-mixed (uniformly distributed) throughout a “continuous”
phase of disordered cubes. Despite the limitations imposed by
these assumptions (i.e., a scenario of relatively dilute clusters),
this model forms a good basis for illustrating the consequences
of interfacial tension on the concentration of ordered particles
in the metastable disordered basin. We define the metastable
basin as a disordered phase that may contain clusters up to the
critical cluster size at the top of the barrier defined as

γ
μ

* = ̅
|Δ |

n
A2

3 od

3i

k
jjjjj

y

{
zzzzz

(12)

The fraction of ordered particles in the basin can then be
evaluated as an integral over various sizes of ordered clusters
described by eq 11:

∫=
*

+
x x nd

n

nordered
0 (13)

A discrete version of the model could also be formulated
considering only integer nucleus sizes (see Supporting
Information). We favor here the continuous version of the
model as it avoids discontinuous jumps in values and makes
trends easier to follow. With applying mass balance on all
particles

+ =x x 10 ordered (14)

Since the left-hand side of eq 14 (when coupled to eqs 12 and
13) consists of continuous functions and takes a value of zero
for x0 = 0 and a value greater than unity for x0 = 1, then the
intermediate value theorem ensures that a solution for x0 ∈ [0,
1] exists where the equality of eq 14 holds. We can then
numerically solve for this value of x0 at any given conditions of
Δμod and γ̅.
We can follow the consequences of this mass action-derived

classical nucleation theory (MADCNT) model in the context
of the cubatic fluctuations observed in the disordered phase of

Figure 7. Free energy (ΔG) profile calculated as a function of fraction
of ordered particles (xordered) for TC25 via umbrella sampling at
coexistence p = 3.64. Previously reported24 free energy profile for a
hard cubes system of identical size (N = 1000) is also shown for
comparison. Free energy is in kBT units.
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hard cubes by evaluating xordered as a function of Δμod and γ̅ for
a particular case. For simplicity, if the ordered clusters are
spherical, the geometric factor will be

π=A (36 )1/3 (15)

As an example, Figure 8a shows a plot of xordered as a function
of Δμod and γ̅.

In general, xordered remains relatively low (<0.01) except for a
diagonal “band” where it can get as high as 0.697. The model
also allows us to extract information about the cluster size
distribution. Sample distributions of xn at coexistence as a
function of cluster size n are shown in Figure 9. Ordered

clusters predominantly exist in clusters of small sizes, with the
spread of cluster sizes generally decreasing with increasing γ̅. It
is informative to evaluate the average cluster size:

∫
⟨ ⟩ = * −Δ

+

n
x

x ne d
n n G n

ordered

0 0
( )

(16)

Figure 8b reveals that the average cluster size generally
correlates with xordered, also attaining higher values along the
diagonal band.
The trends in these MADCNT predictions can be

understood by considering two effects at play relating to the

metastable basin: its depth (embodied by ΔG(n*)) and its
width (embodied by n*). The width of the basin, n*,
determines the upper limit to the integral in eq 13. A larger
n* would imply that more numerous ordered species are
competing against the disordered particles, resulting in a larger
xordered. Hence, the width contributes positively to xordered. On
the other hand, the depth of the basin is related to the
nucleation barrier:

γ
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Δ * = Δ * = ̅
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G n G
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27

3

od
2
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Also, since ΔG(n) < ΔG(n*), larger values will translate into
smaller exponential factors within the integral in eq 13, making
the larger clusters rare. Hence, an increased depth of the
metastable basin contributes negatively to xordered. Since both
width and depth of the metastable basin increase with γ̅ and
decrease with Δμod, the following three distinct regions in the
plots of Figure 8 can be identified depending on whether one
effect dominates or both effects are in play:

I. Bottom-left triangular region: This region has very low
xordered ≪ 1 due to narrow metastable basins ensuing
from a low γ̅ and high |Δμod|. In practice, it would be
very difficult to sustain a metastable state located in this
region due to the very small critical nucleus sizes and
barriers (see isolines in Figure 8), which will likely
manifest as a spinodal decomposition. Interestingly, the
line for n* = 1 demarcates the boundary of this region
where n* < 1.

II. Top-right triangular region: This region also has a low
xordered ≪ 1 but due to reasons different from those for
region I. Due to the high γ̅, the basins are wide and deep.
This would result in a rather robust metastable state with
the rare occurrence of nuclei, consistent with systems
where nucleation and growth is the mechanism of phase
transition. Generally, xordered decreases as γ̅ increases
(interfaces become more expensive) and/or as Δμod
approaches zero (ordered phase becomes relatively less
stable). In contrast with region I, ⟨n⟩ is slightly higher
because larger clusters are being considered. In this
region, we can sufficiently describe the fraction of
ordered particles through MADCNT, since a low
fraction implies the nuclei are unlikely to interact with
each other. The values of xordered predicted by the model
in this scenario have been validated for specific
conditions for hard spheres and are consistent with
predictions of models that use appropriate corrections
for interfacial tension as a function of nucleus size.54

III. Downward diagonal band: In this region, neither of the
effects dominate, leading to a metastable basin that is
neither too narrow nor too deep. This results in a non-
negligible xordered that could take up values greater than
0.5, especially near the lower-right corner (low γ̅, |Δμod
|). This is a scenario that MADCNT is ill-suited to
describe since beyond a certain xordered the ordered
clusters are likely to interact with each other and form
motifs that are not described by eq 10. Indeed, at
sufficiently high xordered, a percolating network of ordered
clusters might form. We refrain from assigning a
percolation threshold as it will depend on the cluster
size distribution which varies with conditions γ̅, |Δμod|.
For example, for completely uncorrelated ordered
particles distributed throughout the bulk, the three-

Figure 8. Predictions from the MADCNT model for spherical
ordered clusters. (a) Fraction of ordered particles xordered and (b)
average cluster size ⟨n⟩ as a function of Δμod and γ̅. The isolines for
the nucleation barrier ΔG* are shown in green. The calculations were
performed with a resolution of 100 points along each axis.

Figure 9. Sample distributions (xn) of ordered particles over various
cluster sizes (n) at coexistence for various values of γ̅ (given in
legend) as predicted by the MADCNT model.
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dimensional percolation threshold for site percolation of
the intrinsic crystal lattice might be an appropriate
bound. The band becomes more diffused as we go to
higher supersaturations, eventually connecting regions I
and II.

While γ̅ and Δμod are easy-to-interpret physical properties,
the trends get simplified when we evaluate xordered as a function
of ΔG* and n*, surrogates of depth and width of the
metastable basin, respectively, as shown in Figure 10. We

notice that regions I and II are mapped into a single triangular
region (light area in Figure 10), and xordered generally increases
with increasing n* and/or decreasing ΔG*. Thus, the fraction
of ordered particles in the metastable phase increases with
shallower and wider basins. We note that this alternative
mapping preserves the general trends described earlier, but it
shrinks certain areas of Figure 8 and expands others, with
certain regions involving infeasible/unusual conditions.
It is instructive to compare Figure 8a with Figure 6. While a

direct quantitative comparison may be difficult since the
geometric factor A is system specific, it can be observed that
most shapes would likely be placed in region II given the
relatively low concentration of ordered particles observed in
the metastable disordered phases of those systems. On the
other hand, both cubes and TC25 could be placed in region III
by the virtue of their low γ̅, which is corroborated by the
observation of non-negligible xordered in their metastable phases
in simulations and can be associated with a wide, shallow
metastable basin.
The validity of a nucleation scenario rests on the basic

assumption that at the early stages of phase transformation the
nuclei of the incipient phase are rare and grow without
interacting with other nuclei before approaching their critical
size. This would largely hold for region II but would eventually
not be true for systems in region III. For cubes, an abundance
of cubatic fluctuations of the incipient ordered phase (as
predicted for lower interfacial free energy) would violate this
assumption. Under such circumstances, the dominant mech-
anism cannot be nuclei growth by conversion of disordered
particles at the interface since there would also exist interfaces
between ordered domains of non-negligible size. Usually, such
an impingement of nuclei leads to a halt in growth56 and the
formation of a final polycrystalline state. However, as

illustrated in our previous publication,24 hard cubes exhibit
fast dynamics of grain resolution by quickly reorienting
intermediate layers along the boundary of two grains and
then propagating a uniform alignment. Hence, any two
impinging clusters could merge in a process similar to Oswald
ripening. An increase in concentration of ordered clusters
would increase instances of such growth mechanisms. There
would be a critical concentration beyond which such instances
of consolidation (or ripening) would become more probable
than the breaking of clusters into smaller clusters. This would
be consistent with our observation in a previous report24 of a
critical concentration of ordered cubes being required to effect
the disorder-to-order phase transition. Indeed, we found that
cubes exhibit a transition that involves ordered phase nuclei
gradually consolidating by resolving grain boundaries through
local reorientation events.

4. CONCLUSION AND OUTLOOK

In this study, we implemented the cleaving-walls method to
directly measure order−disorder interfacial free energy for the
(100) and (110) crystal planes of hard cubes. We found them
to be substantially lower than those for other reported cases of
hard-core particles where nucleation and growth are reported.
Our MADCNT model predicts that a lower interfacial tension
gives rise to more abundant ordered clusters in the disordered
phase, which could explain the abundance of cubatic
fluctuations in the disordered phase for hard cubes. We also
find that hard truncated cubes (TC25) have a higher γ̅100 than
hard cubes which also translates into higher free energy
barriers at comparable coexistence conditions.
There are, however, several open questions regarding the

nonclassical characteristics of the ordering phase transition of
hard cubes. It would be of interest to attain a deeper
understanding of why hard cubes have a lower surface tension
than other shapes. Given that TC25 also has a smaller γ̅
compared to other particle shapes points to the cubic lattice
structure of the ordered phase, and its known peculiarities, as
playing a central role. Of course, cubic symmetry may not be a
sufficient condition for a low γ̅; indeed, we expect that if
interparticle attractions are enacted among cubes, γ̅ could be
made significatively larger. In this context, interfacial tension
calculations for other hard-core shapes and crystal planes
would be informative and could help illuminate any trends
therein. For example, while we found that truncation of the
cubes increases the interfacial free energy (i.e., going from
perfect cubes to TC25), it would be worthwhile to explore if
larger perturbations can alter the behavior to the point where
the classical nucleation and growth picture becomes a valid
description. In assessing the role of γ in the ordering of cubes
and concomitant theories, it is also important to keep in mind
that since most cubatic fluctuations are small and encompass
only 10 or fewer particles, bulk-like domains and their
interfaces are not well-defined. Further, as we have noticed
in our simulations, the effect of the interface could reach ∼3
particles deep into either phase. There are interesting
approaches to address these effects53,54,57,58 and describe the
free energy of small clusters. Even in cases where nuclei are
large enough to have well-defined geometries, it would be
interesting to investigate the morphology of the nuclei through
Wulff construction,40,43 especially in cases with aspherical
nuclei,23 as this would help evaluating the geometric factor (A)
in CNT-like theories.

Figure 10. Predictions from the MADCNT model for spherical
ordered clusters with (a) fraction of ordered particles xordered and (b)
average cluster size ⟨n⟩ as a function of n* and ΔG*. The isolines for
the supersaturation Δμod are shown in green. The calculations were
performed with a resolution of 100 points along each axis.
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Further studies could aim to provide a more rigorous
theoretical treatment that is applicable to region III described
in Section 3.2. The key element would be a description of
ordered motifs that are preferred when the classical theory
predicts the presence of too many ordered nuclei. At high γ̅,
there would be a preference to make compact motifs like
nuclei, but at lower γ̅ the ordered domains could comprise
loose dendritic structures. Also needing a description is a
mechanism that captures how the ordered motifs grow,
analogous to nucleus growth in CNT. For noncompact
ordered domains, the interfacial contribution to the free
energy would not necessarily grow monotonously with the
concentration of ordered particles (see SI), hence leading to
more complex free energy landscapes.
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