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ABSTRACT
Monte Carlo simulations were used to study the influence of particle aspect ratio on the kinetics and phase behavior of hard gyrobifastigia
(GBF). First, the formation of a highly anisotropic nucleus shape in the isotropic-to-crystal transition in regular GBF is explained by the
differences in interfacial free energies of various crystal planes and the nucleus geometry predicted by the Wulff construction. GBF-related
shapes with various aspect ratios were then studied, mapping their equations of state, determining phase coexistence conditions via interfa-
cial pinning, and computing nucleation free-energy barriers via umbrella sampling using suitable order parameters. Our simulations reveal a
reduction of the kinetic barrier for isotropic–crystal transition upon an increase in aspect ratio, and that for highly oblate and prolate aspect
ratios, an intermediate nematic phase is stabilized. Our results and observations also support two conjectures for the formation of the crys-
talline state from the isotropic phase: that low phase free energies at the ordering phase transition correlate with low transition barriers and
that the emergence of a mesophase provides a steppingstone that expedites crystallization.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0135461

I. INTRODUCTION

Polyhedral nanoparticles can now be synthesized with an
unprecedented control through synthetic routes developed in the
last few decades, opening the door for their use as building blocks
of new superstructures.1–3 Indeed, when concentrated, such par-
ticles can form crystalline assemblies that possess unique optical
properties and find applications in photonics and plasmonics.2,4–6

Computational studies have been useful for predicting the phase
behavior of polyhedral particles as a function of their shape,7,8

with many such predictions having already been experimentally
corroborated.9

Particle aspect ratio (AR) is known to be an important determi-
nant of the phase behavior of colloidal nanoparticles.7,8 Generally,
higher particle anisotropy favors the formation of lyotropic liquid
crystalline phases.10 For example, cuboids of very large or very small
aspect ratios can stabilize a variety of mesophases, such as nematic,
smectic, columnar, and cubatic phases.11–14 Low-anisotropy, low-
asphericity particles (e.g., cuboctahedra, truncated cubes, rhombic

dodecahedra)15,16 tend to stabilize rotator mesophases, i.e., solid
phases where particles have translation order but limited or no ori-
entational order. For aspherical shapes with low particle anisotropy,
such as regular triangular prisms,7 octahedra,9,17 and gyrobifastigia
(GBF),7 no mesophases are observed mediating their isotropic and
crystalline phases. When it comes to kinetics of disorder to order
phase transitions, this latter category of shapes is expected to exhibit
the highest nucleation free energy barriers (ΔG∗) at a given super-
saturation (Δμod), as reflected by the difficulty to spontaneously
nucleate the crystalline state in molecular simulations. In fact, for
high enough barriers, no spontaneous transition to ordered phases is
observed when disordered phases are compressed in unbiased simu-
lations (which result instead in dense, kinetically arrested disordered
states).7 Altogether, the above observations for particles with differ-
ent types of shape anisotropy and asphericity are in line with the
conjecture that the existence of a mesophase can kinetically ease the
transition.18 This conjecture has been supported by the phase behav-
ior observed in both hard polyhedra16,19,20 and soft particles forming
block-copolymer type mesophases.21
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In this study, we focus on the phase behavior and kinetics of
disorder–order phase transition in hard gyrobifastigia (GBF). GBF is
chosen for being a particle shape that embodies some unique char-
acteristics and challenges among other faceted particles. GBF is one
of a handful of regular convex space-filling polyhedra but is remark-
able in that it is quite asymmetric in shape and forms an unusual
ABCD lattice (also known as α-Sn),22 implying a multi-layer level of
local cooperativity for crystal nucleation. It is also interesting to note
that the GBF polyhedral shape exists in many molecular and solid-
state structures.23 In a previous study,24 we calculated a very large
ΔG∗ for isotropic–crystal transition (compared to other shapes at
a given Δμod), falling in line with other shapes that do not exhibit
a mesophase behavior. This observation was partly explained by
the discord between the locally favored structures in the isotropic
state and the arrangement of particles in the crystal. Furthermore,
nucleus-size pinning simulations, where a nucleus size is main-
tained and allowed to converge to its equilibrium shape, revealed
a highly anisotropic nucleus shape with aspect ratio of approxi-
mately two. It is unclear whether this nucleus shape anisotropy
plays any role on the ordering transition kinetic mechanism and
free-energy barrier. In this study, we investigate those results by
first performing direct measurements of the disorder–order inter-
facial free energy of various crystal planes using the cleaving walls
method.25,26 We then use these results to perform a Wulff con-
struction to predict a nucleus geometry to corroborate our earlier
findings.

The self-assembly of anisotropic particles has been of great
interest in the simulation literature.27–30 Systematic studies of the
phase behavior of colloidal rods (spherocylinders) as a function
of their aspect ratio (AR) have revealed the existence of liquid
crystalline mesophases for high AR values.31 Similar studies for
faceted particles reveal a richer mesophase behavior.11–14 The kinet-
ics of colloidal rods has been found to be rather nuanced; e.g.,
short rods (AR = 2) may follow nucleation and growth at moder-
ate supersaturations but will get kinetically arrested with a large
number of crystallites at higher supersaturations.30 At extremely
high supersaturation, the system gets arrested in a glassy state. For
longer rods (AR = 3.4), it was reported that the isotropic–smectic
transition is suppressed due to spinodal instability.30 This moti-
vated us to ponder about the effect that particle faceting could
have on the relation between aspect ratio and disorder-to-order
kinetics. Accordingly, in this study, we selected GBF-shaped par-
ticles of different aspect ratios to investigate the effect of particle
anisotropy on the kinetics of isotropic–crystal transition and on
the nucleus shape anisotropy (as previously reported for regular
GBF).24

This paper is organized as follows: Sec. II describes the simula-
tion model, cleaving walls method, and order parameters employed
in this study; Sec. III presents and analyzes the main results, and
Sec. IV provides some concluding remarks and an outlook of future
work.

II. METHODS
A. Model

We restrict our study to the case of athermal systems. Accord-
ingly, any two particles i and j experience a hard pair-potential
given by

Uij =

⎧⎪⎪
⎨
⎪⎪⎩

0 if no overlap,

∞ if overlap.
(1)

The overlap is detected by using the separating axis
theorem.12,32 A GBF (gyrobifastigium) is composed of two regular
triangular prisms (fastigium pl. fastigia meaning roof) attached at a
square base with a twist. The aspect ratio (AR) is defined as

AR =
h
a

, (2)

where h is the height of GBF and a is the side of the square base. For
a regular gyrobifastigium, AR =

√
3. The particle AR in the study

is varied by elongating the triangular faces into isosceles triangles
while keeping the square base of attachment unaltered. If the side of
the square base is two length units, then the height of the triangular
facet is equal to the aspect ratio. We study GBF-like particles with
six aspect ratios ∈ { 1

3 , 1
√

3
, 1,
√

3, 2
√

3 − 1, 3}, as shown in Fig. 1.

B. Monte Carlo simulations
We conducted Metropolis33 Monte Carlo (MC) simulations in

either the canonical (NVT) or the isothermal-isobaric (NpT) ensem-
ble as necessary, where N is the total number of particles, V is the
volume of the system, p is the pressure, and T is the temperature. We
use scaled units consistent with our previous studies,7 with lengths
scaled by the circumradius (ac) of the shape. Thus, the dimensionless
pressure is given by p = βpaa3

c , where pa is the unscaled pressure and
β = 1

kBT , where kB is Boltzmann’s constant. The chemical potential
(μ) and free energy (ΔG) are scaled by kBT, and the supersaturation
is defined as

Δμod = μo − μd, (3)

where μo and μd are the chemical potentials associated with ordered
and disordered phases, respectively. The simulations used peri-
odic boundary conditions to mimic bulk behavior. Each MC cycle
included N translation, N rotation, N flip, and two isotropic vol-
ume moves (for NpT ensemble runs only). Flip moves turn over
the particle along the axis perpendicular to the prism base. Unless
otherwise stated, all configurations were originally obtained for a
cuboidal simulation box with N = 1728 particles containing 12 layers
of 12 × 12 particles arranged in an ABCD crystal lattice of the GBF
honeycomb.

C. Cleaving wall method
We use the cleaving walls method24,25 implemented for our

hard particle Monte Carlo simulations to directly calculate γ for
various crystal planes. More details on the method implementa-
tion and the initial setup are described in a previous study.34 The
method essentially calculates the reversible work done per unit area
of interface created through the following three steps:

(i) Cleaving: Configurations are simulated for both isotropic and
crystalline phases at coexistence conditions, set up such that
the boxes have identical cross-sectional dimensions along a
desired plane (called the cleaving plane). For the crystal phase,
the configurations are generated such that the cleaving plane
is in perfect alignment with the crystal plane of interest. A
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FIG. 1. Shapes from the GBF family considered in this work.

cleaving wall potential is then applied, which gradually moves
the particles to create a gap along the cleaving plane wider
than twice the circumradius of the particle shape, such that
hard particles do not interact across the gap.

(ii) Transposition: The two cleaved systems are then transposed
into one system such that the isotropic and crystalline phases
are placed across the gap. Since particles do not interact across
the gap, this step has no work contribution.

(iii) Merging: The cleaving potential is gradually removed to allow
interactions between particles from the two phases, thus
creating an interfacial system with two interfaces.

In this study, we used as cleaving potential flat walls that interact
with particle centroids; these walls start being positioned at the mid-
plane and are then gradually moved to create an excluded gap along
the cleaving plane. We measured the pressure on the wall using vir-
tual perturbations of the order of 10−3 in reduced length units in
the wall positions. The pressure was integrated with respect to the
wall position to obtain the reversible work imparted on the sys-
tem in steps (i) and (iii). This reversible work done per unit area of
the interface created is the interfacial free energy γ. We performed
all calculations at the disorder–order coexistence pressures. For all
configurations, we first expanded from the tessellated crystal with
appropriate crystal orientation at high pressure of p = 32 to the coex-
istence pressure pic,GBF = 10.8. This resulting configuration was then
melted to the isotropic phase at p = 2 and recompressed to the coex-
istence pressure with the cleaving plane cross section constrained
throughout.

D. Coexistence pressures and driving forces
The isotropic–crystal coexistence pressure for regular GBFs

under scaled units is pic,GBF = 10.8 as calculated in a previous study.34

For non-regular GBFs, we calculate the isotropic–crystal coexistence
pressures using the interfacial pinning method.35,36 Driving forces
Δμod were calculated using thermodynamic integration from the
coexistence conditions.37 Absolute chemical potentials μ at coexis-
tence were calculated via thermodynamic integration over density
from the ideal gas limit as described elsewhere in the literature,37,38

with system-specific details provided in the supplementary material.

E. Order parameters
Steinhardt et al.39 order parameters are used to capture both

local translational and orientational order. We use q6 to quantify the
translational order, whose implementation requires a suitable choice

of the nearest-neighbor cutoff distance rc. More details on our use of
this order parameter are provided in previous studies.16,24 q6 values
for any two particles (i and j) can be used to evaluate translational
correlation dq(i, j),

dq(i, j) = ∑
6
m=−6q6,m(i)q∗6,m( j)

(∑
6
k=−6∣q6,k(i)∣

2
)

1
2 (∑

6
l=−6∣q6,l(j)∣

2
)

1
2

, (4)

where the asterisk (∗) denotes the complex conjugate.
We use the P2 orientational order parameter40 to measure the

orientational correlation between two particles (i and j),

P2(i, j) =
3 cos2 θij − 1

2
, (5)

where θij is the angle between the particles’ z-axis unit vectors, z-axis
being the long axis of the regular GBF.

The definition of nucleus size n is similar to that in our
prior work24 and is based on three parameters the determine what
neighboring ordered particles are clustered: the neighbor cutoff
distance rc, the orientational correlation cutoff P2,c, and the con-
nection threshold ζc. The neighbor cutoff rc is defined as 1.4
×min(2,

√
1 + A R2), while the other parameters are optimized

based on the mislabeling criteria.41 The specific parameter values
used for various aspect ratios are given in the supplementary
material.

F. Umbrella sampling
Umbrella sampling (US) simulations were performed to deter-

mine free energy barriers for various ordering transitions. The recipe
remains largely identical to that used in our previous publications;24

here, we specify key details of the procedure. The size of the largest
nucleus (n) in the system was used as the order parameter along
which the free energy calculation was performed. The transition
path along n was divided into overlapping equal-sized windows.
The process is started with a window where a range of nucleus
sizes are readily sampled in an unbiased simulation, i.e., around
the metastable basin. A configuration with one of the largest nuclei
thus found is used to launch the next US window that is now set
up to restrict the nucleus to remain in a range of larger n values
(than in the previous window). The process is repeated until the
free-energy (found as explained shortly) starts decreasing, signaling
that the barrier top has been surpassed. The size of each window
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varied depending on the conditions and the size of the system (see
the supplementary material). Unbiased isothermal-isobaric simula-
tions were performed at each window to collect histograms of the
relative frequency with which different n values are visited (rejecting
any move that would take the system outside the window bounds);
n values were sampled every two MC cycles. Free energy curves
extracted from the frequency histograms collected from individual
sections are stitched together by matching values in the middle of
the overlapping regions of neighboring windows. The values ΔG and
the final barrier ΔG∗ are calculated in reference to the free energy
of the homogeneous disordered phase using unbiased simulations
to estimate the probability to form a crystal nucleus of size n, as
described in earlier studies.37,42 We also made sure that the nuclei
did not become too large compared to the system size (preferably no
greater than N/10) and interact with their periodic images, the latter
being particularly likely for highly anisotropic nuclei.

III. RESULTS AND DISCUSSION
A. Anisotropic nuclei for GBF

In this section, we investigate the origins of the anisotropic
shape of the GBF crystal nucleus during the isotropic–crystal transi-
tion. Our earlier studies revealed that the aspect ratio of the crystal
nucleus in regular GBF did not appreciably change with size, with
the shape getting increasingly better defined for larger nuclei. This
motivates us to investigate the existence of an intrinsic shape of the
nucleus, defined by the properties of the crystal–isotropic interface.
In this section, we predict a simple nucleus’ polyhedral geometry
by using a Wulff construction based on calculated interfacial free
energies of distinct crystals planes.

1. Crystal planes of interest
For simplicity, we assume that the surface of the crystal nucleus

is comprised of low index crystal planes that are fundamentally flat.

FIG. 2. Crystal planes of interest based on their prominence in the crystalline
nucleus of GBF.

A given crystal may have several closed packed crystal planes, close
packing being defined by the absence of steps and sheet-like arrange-
ment of particles along the plane.43 Since interfacial free energy
calculations can be expensive, we narrow down the relevant crys-
tal planes to those prominently present in the simulation-observed
nucleus shape (Fig. 2). We hence choose the three crystal planes
(100), (001), and (

√
12 0 1). The last plane arises from the lattice

geometry and has a flatter profile than the other two. This plane will
henceforth be referred to as the s (slant) plane.

2. Interfacial free energy calculations
We used different system sizes to simulate different crystal

planes to avoid artifacts during the cleaving walls’ calculation. In
particular, the (001) plane required the use of a longer crystal phase

FIG. 3. Cleaving walls calculation for the GBF (100) plane at the coexistence pres-
sure p = 10.8. (a) Sample interfacial configuration at the end of the procedure.
Ordered and disordered phase particles are colored blue and red, respectively. (b)
and (c) Pressure variation with the position of the cleaving walls with respect to
the midplane (quantifying the gap width) for (b) ordered and (c) disordered phase.
Cleaving data are shown with a solid line, and merging data are shown with a
dotted line. Scaling for the axes is described in Sec. II B.
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FIG. 4. Cleaving walls calculation for the GBF (001) plane at the coexistence pres-
sure p = 10.8. (a) Sample configuration at the end of the procedure. Ordered and
disordered phase particles are colored blue and red, respectively. (b) and (c) Pres-
sure variation with the position of the cleaving walls with respect to the midplane
(quantifying the gap width) for (b) ordered and (c) disordered phase. Cleaving is
shown with a solid line, and merging is shown with a dotted line. Scaling for the
axes is described in Sec. II B.

to minimize the warping that this phase tends to exhibit upon
compression. All interfacial free energies were calculated at the
coexistence pressure pic,GBF = 10.8. Final merged configurations and
pressure vs wall position plots for the three crystal planes are shown
in Figs. 3–5, and results are summarized in Table I. The pressure pro-
files can be interpreted in relation to the associated reversible work
performed upon the system, which is equal to the area under the
curves in each step. Thus, the difference in the area under the solid
line and the dotted line correlates with the net reversible work done
to get a phase from a bulk, uncleaved state to a state where it is inter-
facing with the other phase. This reversible work per unit interfacial
area created is equal to γ. Note that since the pressure measured for
these virtual cleaving planes can vary depending upon the arrange-
ment of particles at the interface, one may not expect equal pressures

FIG. 5. Cleaving walls calculation for the GBF s = (
√

12 0 1) plane at coexistence
pressure p = 10.8. (a) Sample configuration at the end of the procedure. Ordered
and disordered phase particles are colored blue and red, respectively. (b) and
(c) Pressure variation with the position of the cleaving walls with respect to the
midplane (quantifying the gap width) for (b) ordered and (c) disordered phase.
Cleaving is shown with a solid line, and merging is shown with a dotted line. Scaling
for the axes is described in Sec. II B.

on either side of the cleaving plane upon merging. This apparent
discrepancy was shown to have no effect on the calculated interfa-
cial free energy when compared to more realistic walls that interact
with the particles’ facets and edges rather than with their centroids.34

TABLE I. Simulation details and results from the cleaving walls method calculation
of the interfacial free energy (γ) of various GBF crystal planes at coexistence. NI :
number of particles in the initial isotropic phase, NC: number of particles in the initial
crystalline phase. The uncertainties reported in γ are standard deviations.

Crystal plane NI NC γ

(100) 1728 1728 1.60 ± 0.02
(001) 1728 3456 1.13 ± 0.04
(
√

12 0 1) 1872 1872 0.76 ± 0.03
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3. Relation of interfacial roughness
and interfacial free energy

In an earlier study,34 we conjectured that the interfacial free
energy correlates with the roughness of the crystal plane. The results
for the GBF crystal planes substantiate that conjecture as visual
inspection [Fig. 6(a)] places the apparent roughness of facets in the
order: (001) > (100) > s, which is the same as that of decreasing γ.
This could be understood by considering how much excluded vol-
ume for the isotropic phase a given crystal interface creates due to
its roughness. This effect can be captured by calculating the interfa-
cial potential of mean force (PMF) experienced by a free particle at a
given distance x from a perfect crystal interface. The interface loca-
tion is assigned based on the limiting proximity that a particle can
get to the surface (being forbidden from occupying any space closer
than that). Such a limiting proximity would correspond to the point
where PMF →∞. However, here we use PMF = 7 kBT as an effective
exclusion threshold and as surrogate of an impractical infinite PMF
value. More details of the method are provided in an earlier study.34

The interfacial PMF for all three facets is calculated as a function of
distance from the interface, as shown in Fig. 6(b). We find that the s
facet unequivocally has the shortest range of influence. (001) is has

FIG. 6. Correlation of surface roughness and interfacial free energy. (a) Surface
topographies of various crystal planes. (b) Interfacial potentials of mean force
(PMF) experienced by a free particle at a distance x from the interface (defined
by PMF = 7 kBT).

higher PMF at short distances (x < 0.5) than (100) but decays to zero
quicker at longer distances, indicating a shorter range of disruption
overall.

4. Wulff construction
We can utilize the interfacial free energies calculated for the

three crystal planes to perform a Wulff construction.43–45 The con-
struction applies to the steady state geometry of a crystalline nucleus,
and is based on the relation that the perpendicular distance of a crys-
tal facet i from the center of mass (hi) is proportional to its interfacial
free energy γi, i.e., hi ∝ γi. This relation can be used to determine
the relative positions of crystal planes, with the enclosed volume
representing the nucleus shape. The Wulff construction for a GBF
crystal nucleus is shown in Fig. 7(a), where we take the perpendic-
ular distance to the least energetically expensive facet s as hs = 1,
with subsequent planes placed at a distance proportional to their
corresponding γ. We also leverage the symmetry of the crystal to
place equivalent crystal planes, which allows us to find a closed poly-
hedron [Fig. 7(b)]. We find that the crystal plane (100) does not
appear in the predicted nucleus shape, resulting in a shape we could
describe as an isosceles square bipyramid with two vertices truncated
along the long axis. The shape is remarkably similar to the largest
nuclei observed in our simulations (see, e.g., Fig. 2). Furthermore,
the aspect ratio of this predicted nucleus geometry is calculated to
be 2.05, which is consistent with that from the nucleus size-pinning
simulations, which ranged between 1.9 and 2.1.24 Based on relative
areas of s and (001) facets in the Wulff construction, we calculated
the average interfacial free energy of the nucleus at coexistence to
be γavg = 0.79, which is also in agreement with the previous pre-
dictions based on classical nucleation theory.24 These calculations
reveal that significant anisotropy in interfacial free energy along
different crystal planes can result in anisotropic crystalline nuclei
for hard polyhedral particles. Ultimately, the crystal grows adopt-
ing a shape that minimizes the free-energy cost associated with
the crystal–liquid interface, which for GBF means a shape with a
preponderance of the s facet.

FIG. 7. Wulff construction for regular GBF at coexistence. (a) Geometric construc-
tion generated using Desmos online graphing calculator.46 (b) Schematic of the
predicted 3D polyhedral nucleus shape.
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B. Effect of particle aspect ratio
1. Phase behavior

The phase behavior for the GBF family of shapes is illustrated
in Fig. 8 where we plot regions of various phases bounded by their
coexistence volume fractions ϕ as a function of aspect ratio. For all
aspect ratios considered, we observe the existence of an isotropic
and an ABCD crystalline phase. For a broad range of aspect ratios,
the phase behavior remains qualitatively identical to that of regu-
lar GBF with the crystal phase being the only ordered phase that
forms. For extreme aspect ratios, we observe the stabilization of a
nematic mesophase at intermediate packing fractions by both the
compression of the isotropic phase and the expansion of the crys-
talline phase (albeit with some hysteresis around the coexistence
pressure). This is expected, since at higher aspect ratios, particles are
more anisotropic and, hence, become closer to the geometric cate-
gory of oblate or prolate shapes that form lyotropic liquid crystalline
mesophases.7

Further details and equations of state for individual aspect
ratios are provided in the supplementary material.

2. Crystallization transition kinetics
We elucidate the effect of AR on nucleation kinetics for

isotropic–crystal transition for three select aspect ratios, which
exhibit no mesophase behavior: AR ∈ {1,

√
3, 2
√

3 − 1}. As in prior
studies, we use the nucleation barrier ΔG∗ for a set of degrees of
supersaturation (Δμod) as a measure of how difficult it is to nucleate
the crystal phase, with larger ΔG∗ correlating with the slower nucle-
ation rate. This approximation is rooted in the classical nucleation
theory wherein the rate constant depends exponentially on −ΔG∗

(in kBT units) and only linearly on a prefactor, whose values, while
different for different AR systems, are expected to be within a simi-
lar order of magnitude. We have previously reported the nucleation
barriers for AR =

√
3,24 and hence, here we computed the values

for the other two aspect ratios. Figure 9 shows the free-energy pro-
files as a function of n for AR = 2

√
3 − 1 for different Δμod values,

FIG. 9. Nucleation free energy ΔG (in kBT units) as a function of the largest
nucleus size (n) for GBF with AR = 2

√

3 − 1 for Δμod = −0.34, −0.5, and −0.64,
corresponding to the dimensionless pressures of p = 17, 17.5, and 18, respectively
(the isotropic–crystal phase coexistence pressure is 15.67). Results obtained from
umbrella sampling simulations.

and Fig. 10(a) summarizes the results for ΔG∗ for the three AR of
interest. Figure 10(a) reveals a clear trend wherein at a given super-
saturation longer particles have lower nucleation barrier. In fact, the
barrier for AR = 2

√
3 − 1 is reduced to the point that the isotropic

phase transitions spontaneously to the crystal phase in an unbiased
simulation.

Interestingly, these trends in nucleation barriers correlate with
the absolute chemical potential at the isotropic–crystal phase coex-
istence calculated for various aspect ratios shown in Fig. 10(b):
Systems with a larger coexistence chemical potential have a higher
crystallization nucleation barrier (for comparable degree of super-
saturation). In previous work,47 it was argued that in considering a
family of particle shapes capable of forming the same target ordered

FIG. 8. (a) Phase diagram of the GBF family of shapes as a function of aspect ratio (AR). Circles denote the coexistence volume fractions (ϕ). Green cir-
cles indicate the boundaries for the nematic phases. (b)–(e) Representative snapshots for crystalline and nematic phases for AR = 1

3
(b) and (c) and AR = 3

(d) and (e).
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FIG. 10. (a) Isotropic–crystal nucleation barriers ΔG∗ as a function of the
degree of supersaturation ( Δμod) for GBF systems with three aspect ra-
tios: AR = 1 ( red),

√

3 ( green), and 2
√

3− 1 (blue). (b) Absolute chemical
potential of the isotropic phase at coexistence (with crystal or nematic phase, as
applicable) as a function of the particle aspect ratio.

phase, the one that has the lowest free-energy at the disorder-to-
order transition has the optimal shape to achieve such a target. In
other words, if one is coming from the isotropic phase, the crystal
phase is most stable at the point where it can be reached with its
lowest free-energy, which in this case occurs for the more elongated
GBF. It is then conjectured here that the most stable crystal phase
would reflect some intrinsic affinity of the particle shape to arrange
into their crystalline structure and should hence be easier to reach
or nucleate from the isotropic phase, i.e., exhibit smaller ΔG∗. In
addition, note that in this case, the kinetic optimality in AR coin-
cides with the system with the lowest packing fraction of both the
isotropic and crystal phases at the transition, a fact that may be asso-
ciated with a lower interfacial tension and easier rearrangement of
particles at the nucleus interface.

The anisotropic nucleus geometry observed for regular GBF
(AR =

√
3) also systematically varies upon changes in the particle

AR. In general, the crystalline nucleus aspect ratio increases with
particle AR (Fig. 11). The nucleus aspect ratio is defined via the
principal moments of the nucleus inertial tensor as the ratio of the

FIG. 11. Variation of nucleus aspect ratio as a function of particle aspect ratio (AR)
for the GBF particles in the process of isotropic–crystal nucleation. The calcula-
tions were performed for nuclei close to the critical size. Sample snapshots of the
corresponding critical nuclei obtained through umbrella sampling are also shown.

longest axis to the average of the other two. We performed this cal-
culation for nuclei close to the critical sizes obtained through US
simulations, but our observations here and in the previous study23

indicate that this aspect ratio remains relatively consistent during
nucleus growth. Also, the nuclei become more fragmented with
increasing particle AR (and inversely more compact for smaller AR).
These results also align with the conditions for kinetic optimality
alluded to in the previous paragraph: in the longer GBF, the crystal
nucleus interface would be more dominated by the crystal facet with
the lowest interfacial tension, thus contributing to a lower ΔG∗ (not-
ing that, according to the classical nucleation theory, ΔG∗ ∝ γ3

)

and a tendency for nucleus fragmentation. Interestingly, our obser-
vations indicate that the critical nucleus size always have at least four
layers of particles along the long axis of the nucleus; this is consistent
with the facts that (i) the crystal nucleus shape tends to have an elon-
gated aspect ratio (as suggested by the Wulff construction) and (ii)
to form a minimal seed of the ABCD lattice one would need at least
four layers stacked along the particle’s main axis.

While simulating the transition kinetics or ΔG∗’s associated
with the isotropic–nematic or the nematic–crystal phase transi-
tions for our most oblate (AR = 1/3) and most prolate (AR = 3)
GBF shapes lies beyond the scope of this study, it is interesting
to note that those transitions occurred spontaneously upon com-
pression from the isotropic phase. This should be contrasted with
the trend observed for increasing oblateness, e.g., the AR = 1 and
AR = 1/

√
3 cases for which no intermediate nematic phase occurs,

and the crystal state cannot be reached spontaneously from the
isotropic phase (regardless of the degree of supersaturation). This
supports the conjecture18 that the emergence of a mesophase (whose
structural order is intermediate between those of the isotropic and
crystal phases) acts as a transitional state that effectively facilitates
(or catalyzes) the attainment of crystalline order by splitting a single
large barrier (for the isotropic-to-crystal transition) into two smaller,
easier to overcome barriers (for the isotropic-to-mesophase and
the mesophase-to-crystal transitions). While increasing prolateness
does reduce the isotropic-to-crystal ΔG∗ as shown in Fig. 10(a), the
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crystal phase obtained spontaneously upon compression becomes
more prone to forming multiple grains; in contrast, once a nematic
phase occurs (e.g., for AR = 3), it templates the bulk orientational
order and, hence, promotes the formation of single-grain crystals
upon compression. Altogether, it is seen that the appearance of a
nematic mesophase is helpful in realizing the crystalline order from
the isotropic state. A more detailed account of these observations
and the corresponding equations of state for different systems are
given in the supplementary material.

IV. CONCLUSIONS AND OUTLOOK
In this study, we have studied both thermodynamics and

kinetic properties of the disorder-to-order transition in a family of
hard GBF-shaped particles, taken as representative of faceted parti-
cles that exhibit a low order of rotational symmetry and form a non-
trivial crystalline lattice structure. For the regular GBF, we found
that the unusual anisotropy of crystal nuclei in a metastable isotropic
phase can be largely explained by the anisotropy in interfacial energy
along different crystal planes. Indeed, by directly measuring interfa-
cial free energies of various GBF crystal planes with the isotropic
phase, we are able to predict a prolate nucleus shape and average
nuclei interfacial free energy in remarkable agreement with inde-
pendent estimates from umbrella sampling and nucleus size pinning
simulations. While it is not fully resolved why certain crystal planes
have higher interfacial free energy, our interfacial PMF calculations
point to the significance of a correlation between surface roughness
of the crystal plane and its interfacial free energy. If this correlation
holds more generally, one could then engineer particle shapes such
that certain crystal planes are preferred at the nuclei’s interface or
that prominent facets are flatter to enhance the transition kinetics.

The phase behavior of the regular GBF (AR =
√

3) qualitatively
extrapolates unchanged to the GBF-like shapes with not too dissim-
ilar aspect ratios, but it significantly changes at extreme aspect ratios
(e.g., for AR = 1/3 and 3) with the stabilization of liquid crystalline
phases in between the isotropic and crystal states. This is in line with
the results from other anisotropic hard particle shapes, and in line
with a prior conjecture, we find that the emergence of the nematic
phase is associated with the facilitation of spontaneous formation of
the crystalline phase through gradual compression simulations that
start from the isotropic phase. For the range of aspect ratios where
the phase behavior comprises of isotropic and crystalline phases
only, we find that the height of nucleation barriers (for a given degree
of supersaturation) inversely correlates with the particle aspect ratio.
Thus, one could conjecture that a similar trend may hold for other
hard particle shapes, i.e., that the crystallization will be accelerated
upon elongation of particles.

There are several open questions regarding the disorder to
order transitions of anisotropic hard particles. While we noted that
both the crystal nucleation free-energy barrier decreases and the
nucleus shape elongates as the GBF becomes more prolate, obser-
vations suggestive of a reduction of nucleus’ interfacial free energy,
it would be instructive to support such trends by computing inter-
facial free-energies (say at coexistence conditions) for systems with
varying aspect ratios. While we have focused on a specific parti-
cle geometry (GBF), we expect that some of the trends in phase
and kinetic behavior to be general; however, further studies are
needed on other particle shapes and their kinetics as they may

reveal case-specific peculiarities during a phase transition. Impor-
tantly, while we used nucleation free-energy barriers as surrogate
metrics for the transition kinetics, comparing the exponentials of
−ΔG∗ (in kBT units) only provides a sense of the relative nucleation
rates across the different conditions and systems studied; meth-
ods that explicitly probe nucleation rates and time scales16,37,42,48

should also be implemented to provide data more directly testable by
experiments.

It would also be interesting to explore to what extent other
instances of anisotropic nuclei in hard particle crystallization can
similarly be explained by a simple Wulff construction with a few
crystal planes considered. Note that in our study, we ignored the
effects of any dislocations or defects that may lead to an irregu-
lar presentation of a crystal interface that may not correspond to
a crystal plane of the perfect crystal. Such deviations, often borne
out of screw dislocations and defects, could be interesting to con-
sider in future studies. Furthermore, it would be illuminating to
find and analyze cases where the particle AR is negatively corre-
lated with the nucleus aspect ratio and elucidate the role played by
trends in interfacial tension. Finally, having noticed that the nuclei
become increasingly fragmented with increasing aspect ratio, we
wonder how elongated a nucleus could become before becoming
dendritic. In our system, reaching such a scenario was precluded
by a change in phase behavior, but other systems may not have this
limitation.

While we noted some qualitative features of the nematic phases
and their transitions for very oblate and prolate GBFs, it would be
of interest to study in more detail the liquid crystal to crystal phase
transitions for faceted particles. For example, some similarities and
differences may exist in how the liquid crystalline phase crystallizes
for prolate vs oblate particles. Such systems would provide an oppor-
tunity to quantify the overall reduction in the ordering transition
barrier due to the presence of the mesophase, as has been posited
for other soft matter systems.18,21 Work along these lines is cur-
rently underway. Some preliminary analysis of the ordering occur-
ring for the AR = 3 GBF system is included in the supplementary
material.

Experimental studies with faceted particles whose aspect ratios
are tunable would allow testing of some of our predictions. Our find-
ing that longer particles were easier to crystallize could mean that
the crystallization pathways could be engineered to promote or hin-
der phase transitions. For example, it has recently been reported that
GBF related lattices could be of special importance for achieving the
colloidal diamond lattice,22 with the specific AR = 1 being particu-
larly useful for this purpose. However, since AR = 1 GBFs are one
of the harder systems to crystallize according to our simulations,
and it could hence be useful to consider approaching the sought-
after lattice structure by first crystallizing a longer shape and then
shrinking it, e.g., by exploiting the anisotropic swelling–deswelling
of elastomeric particles.49

SUPPLEMENTARY MATERIAL

See the supplementary material for additional details provided
pertaining to the calculations of equations of state, chemical poten-
tials at the disorder–order phase transition, and umbrella sampling
of crystal nucleation barriers for GBFs of different aspect ratios.
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