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Classical Nucleation Theory (CNT) has recently been used in conjunction with a seeding approach
to simulate nucleation phenomena at small-to-moderate supersaturation conditions when large free-
energy barriers ensue. In this study, the conventional seeding approach [J. R. Espinosa et al., J. Chem.
Phys. 144, 034501 (2016)] is improved by a novel, more robust method to estimate nucleation barriers.
Inspired by the interfacial pinning approach [U. R. Pedersen, J. Chem. Phys. 139, 104102 (2013)] used
before to determine conditions where two phases coexist, the seed of the incipient phase is pinned to a
preselected size to iteratively drive the system toward the conditions where the seed becomes a critical
nucleus. The proposed technique is first validated by estimating the critical nucleation conditions for
the disorder-to-order transition in hard spheres and then applied to simulate and characterize the highly
non-trivial (prolate) morphology of the critical crystal nucleus in hard gyrobifastigia. A generalization
of CNT is used to account for nucleus asphericity and predict nucleation free-energy barriers for
gyrobifastigia. These predictions of nuclei shape and barriers are validated by independent umbrella
sampling calculations. Published by AIP Publishing. https://doi.org/10.1063/1.5021602

I. INTRODUCTION

First order phase transitions from metastable phases to
stable phases often take place through a mechanism of nucle-
ation and growth. In particular, crystal nucleation involves the
formation of ordered domains of the stable phase (nuclei) that,
once sufficiently large, can spontaneously grow to reach the
macroscopic size. The condition at which a given nucleus has
an equal probability to grow and decay is termed as critical.1,2

To a good approximation, this critical state corresponds to
a saddle region in the transition pathway and, hence, where
the nucleus attains its highest free energy. The nucleus must
overcome this critical or transition state to form the stable
phase, and the difference between the free energy of the crit-
ical state to the pure metastable state is called the nucleation
barrier (∆G∗). Detailed knowledge of the mechanism of how
such nuclei form and grow is of great practical importance, for
this can open the door to rationally manipulate or bias these
processes, e.g., to catalyze the assembly of nanoparticles into
ordered structures.3,4

Computer simulations have emerged as a valuable com-
plementary tool to experiments and theory to study the mecha-
nism of nucleation and growth for a variety of phase transitions
and systems. Since the formation of an ordered domain in a
moderately metastable disordered phase is a rare event, using
brute force simulations to sample representative nucleation
trajectories is computationally impractical unless the nucle-
ation free-energy barrier is small (say order of a few kBT ).
For example, for a nucleation barrier of 20 kBT, the chance
of sampling the critical condition is nearly one in a billion

a)Author to whom correspondence should be addressed: fe13@cornell.edu

trial configurations attempting to escape the metastable basin.
Hence, a variety of rare-event sampling techniques have been
developed and employed to understand nucleation kinetics,
such as umbrella sampling,5–7 forward flux sampling,7–11 and
metadynamics.12–14 However, application of these techniques
is limited in cases where nucleation barriers are steep and/or
high where the ratcheting of configurations through milestones
along the pathway from the disordered phase becomes inef-
ficient and tedious. This is because, when climbing steep
free-energy profiles, the relative frequency with which the
high free-energy states are visited is quite low in proportion
to the low free-energy states, thus leading to poor sampling
and inaccurate estimates of free energy differences. A way
to overcome this limitation is the “seeding approach.”15–18

The approach essentially involves insertion of a preformed
ordered domain (seed) into the disordered phase and observ-
ing its growth/decay behavior. Several simulations are then
run for different degrees of supersaturation trying to nar-
row down the conditions when a transition occurs between
growth and decay behaviors,17,18 i.e., the seed grows sponta-
neously above a critical supersaturation while decays spon-
taneously below it. Once the critical conditions are found,
they are used in combination with classical nucleation the-
ory (CNT) to evaluate the key parameters that characterize
the nucleation process such as the nucleation free-energy
barrier, interfacial energy, and the nucleation rate. This seed-
ing approach has been successfully demonstrated for nucle-
ation in L-J systems,15 NaCl,18 hard spheres,17 water, lattice
models,19 and metals.20 Besides homogenous nucleation, the
method has been employed to study heterogeneous nucleation
phenomena in nanoparticles,21 including cases with a cubic
seed.22 While seeding appears to be a promising method to
study nucleation at low-to-moderate supersaturations (and to
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complement the scope of other methods that can resolve nucle-
ation behavior for moderate-to-high supersaturations without
resorting to CNT), its applicability relies on the following
preconditions/assumptions:

(i) CNT can be used to estimate the free-energy barrier
height. Appropriate order parameters to detect the seed
and classical (as opposed to non-classical) nucleation
pathways are ingredients typically associated with this
assumption.

(ii) The seed growth-to-decay transition behavior is abrupt
and detectable with limited sampling.

(iii) The system can evolve from an initially arbitrary
shaped seed (typically spherical) to the inherent seed
shape in a timely fashion. The configurations obtained
upon insertion and equilibration of the seed are a rep-
resentative of those that would occur spontaneously in
the system.

Assumption (i) underpins the seeding method and the exten-
sion to be elaborated in this work. Assumption (ii) can be
invalid for systems with a flat or diffusive free energy profile
around the top of the barrier (implying a low Zeldovich factor),
where the transition from growth-to-decay behavior is gradual,
and when even a slightly post-critical nucleus has a signifi-
cant probability of dissolution. In such a scenario, it would
be difficult to precisely pin point the critical condition alto-
gether, and extensive sampling is required to quantify growth
vs. decay behavior. We note here that conventional seeding
studies have thus far only considered the “first occurrence”
of growth to decay to bracket the critical condition.17,18 A
more statistically rigorous implementation would entail, e.g.,
estimating growth/decay probabilities from more extensive
sampling of trajectories, such that the critical condition2,16 can
be established by the equality of growth and decay probabili-
ties. Assumption (iii) could be violated if the initially assumed
seed shape is very different from the inherent seed geome-
try.23–26 While equilibration of the seed can take place over a
shorter time scale than that for seed growth/melting as imple-
mented in conventional seeding,27 such a trend is system and
seed-size dependent. Furthermore, it may not be straightfor-
ward to establish whether seed equilibration is attained, which
may affect the seed growth/decay behavior and lead to unreli-
able results for both the seed size and critical condition. In fact,
even though we can “surgically” insert an ordered seed into a
disordered phase and then equilibrate17,18 it, the initial struc-
tures of the core and interface may remain far from their “natu-
ral” states over very long simulation periods. This is important
because the configurations present at the interface can play
a crucial role in the overall mechanism of nucleation and
growth.3

In this study, we propose and demonstrate a variant of the
seeding approach that improves the handing of the constraints
(ii) and (iii) listed above. In essence, we introduce an iterative
scheme (similar to interfacial pinning28–30) that converges to
the critical nucleation conditions for a seed of a prescribed
size without the need to assume the seed shape or to constrain
the interface morphology. We call this method nucleus-size
pinning (NSP) which we couple to a generalization of CNT
to extend its scope to treat seeds of arbitrary geometry. Our

main application of this approach is for the nucleation of an
aspherical seed for hard gyrobifastigia (GBFs). GBF is a John-
son solid consisting of four square and four triangular faces
whose equilibrium phase behavior has been studied earlier,
being remarkable for its ability to form a space-filling crystal
and inability to form any mesophase.31 GBF can be seen as a
test-bed that provides a stringent test to simulation studies of
crystal nucleation, given not only the anisotropy of its shape
and of its crystal lattice but also the large free-energy barriers
that have been associated with their disorder-to-order phase
transition.31

The rest of this paper is organized as follows. In Sec. II A,
we present the generalization of CNT for arbitrary seed geome-
tries. In Sec. II B, we describe the details of the NSP method,
followed by a description of simulation details and order
parameters in Secs. II C and II D, respectively. In Sec. III A,
we first validate the applicability of NSP by replicating estab-
lished nucleation barrier results for hard spheres,6,7,17 and then
in Sec. III B, we apply this method to GBF crystallization.
Finally, in Sec. IV, we present our conclusions and an outlook
for the method.

II. METHODS
A. Generalized classical nucleation theory

For a system with an ordered (solid) seed of volume V s

and surface area As, the extensive free energy of the system
φT in reference to a disordered (liquid) bulk phase is given
as

φT = φbulk + φi, (1)

where φi is the contribution of the interface between the seed
and the liquid, and φbulk is the difference between contribu-
tions of bulk solid and liquid phases for a volume V s. φi is
proportional to As, while the bulk contributions are propor-
tional to V s or to the number of particles in the seed N s, thus
Eq. (1) becomes

φT = −∆µNs + γAs, (2)

where ∆µ is the chemical potential difference between liquid
and solid, and γ is the interfacial free energy to maintain the
solid-liquid interface. For systems where the liquid phase is
metastable, ∆µ is positive (implying that φ decreases with V s

because the solid is thermodynamically more stable). For a
given seed of fixed geometry, N s is proportional to the volume
V s, which in turn is related to the length scale of the seed (L)
as

Ns ∝ VS ∝ L3 (3)

→ L ∝ N
1
3

s . (4)

Similarly, for a given geometry, the surface area As is propor-
tional to L2 so that, according to Eq. (4),

As ∝ L2 ∝ N
2
3

s . (5)

Equation (5) can be used to rewrite Eq. (2) with a proportion-
ality constant (kA) as

φT = −∆µNs + kAN
2
3

s . (6)
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In order to find the critical nucleus size N∗s , the expression for
the derivative of φT with respect to N s is set to zero,

dφT

dNs
= −∆µ +

2kAN∗s
− 1

3

3
= 0, (7)

N∗s =

(
2kA

3∆µ

)3

. (8)

Which when substituted in Eq. (6) gives

φ∗T = −∆µ

(
2kA

3∆µ

)3

+ kA

(
2kA

3∆µ

)2

=
4k3

A

27∆µ2
=

N∗s ∆µ

2
.

This critical free energy barrier will also be denoted as ∆G∗ so
that this equation is

φ∗T ≡ ∆G∗ = N∗s ∆µ/2. (9)

This expression is the same as the one associated with CNT
and has been reported in earlier studies.17,18,32,33 The key fea-
ture of Eq. (9) is its independence of seed geometry; as it
only assumes the validity of the square-cube law relating the
surface area and the volume. Thus, Eq. (9) can be used to cal-
culate the nucleation barrier (∆G∗) once a critical seed (of size
N∗s ) of appropriate geometry is obtained, which need not be
spherical.

B. Nucleus-size pinning

In this section, we shall derive the iterative expression used
by nucleus-size pinning for estimating the critical supersatura-
tion conditions. For concreteness, this derivation is targeted to
estimate the critical pressure (at constant temperature), but it
can be readily generalized for any thermodynamic field other
than pressure (e.g., temperature) as described in our earlier
publications.28 For a pure component system at a fixed tem-
perature T, the fundamental thermodynamic equation can be
written as

dµ = vdp. (10)

In an isothermal-isobaric (NPT) ensemble with N total parti-
cles at pressure p and temperature T, the probability p(N s) of
a state with N s particles in the solid phase seed can be written
as

p(Ns) ∝ exp(−φT (Ns)). (11)

The total free energy can again be split up as

φT (Ns) = φbulk,solid(Ns) − φbulk,liquid(Ns) + φi(Ns). (12)

For critical nucleation conditions, the slope ST =
dφT
dNs

should
be zero, thus

ST =
dφbulk,solid

dNs
−

dφbulk,liquid

dNs
+

dφi

dNs
= 0. (13)

But since at constant pressure and temperature φbulk,j = µjNs,
Eq. (13) becomes

ST = µsolid − µliquid +
dφi

dNs
. (14)

Let p∗ denote the critical pressure corresponding to a preset,
target seed size N s ,t . Assume that an initial isothermal iso-
baric simulation is conducted at a pressure pA corresponding
to a point A on the free energy curve where the seed size is
N s ,A. The goal is to devise a scheme that, given simulation
data at pA, it returns a guess pressure pB that is closer to p∗, a
process that can be iterated till convergence to p∗, in a man-
ner analogous to interfacial pinning.28–30 For this purpose, we
approximate selected terms in Eq. (14) by truncated Taylor
expansions around point A to obtain an extrapolation to a point
of interest B as follows:

µj,B = µj,A +
∂µj,A

∂p
∆pBA, (15)

dφi,B

dNs
= CA, (16)

which are the first and zeroth order approximations, respec-
tively, with µj,A and CA being the values of properties at point
A, and ∆pBA = pB − pA. Note that for Eq. (16), we assume
that for small changes in pressure the interfacial contribu-
tion to the slope is not a strong function of pressure17 and
hence can be approximated as a constant (whose value is CA).
This assumption may be relaxed with the use of a suitable
modification to CNT that describes the variation of interfa-
cial free energy with pressure; a more detailed analysis of
this assumption, including a CNT-based estimation of γ, is
given in the Appendix. Substituting Eq. (10) into Eq. (15),
we get

µj,B = µj,A + v̄A ∆pBA, (17)

where v̄A is the ensemble average of the specific volume at
point A. Furthermore,

∆µsl,B = µsolid,B − µliquid,B = ∆µsl,A + ∆v̄sl,A∆pBA, (18)

where ∆µsl,A and ∆v̄sl,A are the differences in chemical poten-
tial and specific volume at point A, respectively. Substituting
Eqs. (16) and (18) into Eq. (14), we obtain an expression for
ST ,B,

ST ,B = ∆µsl,A + CA + ∆v̄sl,A∆pBA = ST ,A + ∆v̄sl,A∆pBA. (19)

For a given point A, if ST ,A and ∆v̄sl,A are known, the
needed change in pressure ∆pBA to reach the desired value of
ST ,B = 0 (critical condition) can be obtained as

∆pBA = −
ST ,A

∆v̄sl,A
(20)

→ pB = pA −
ST ,A

∆v̄sl,A
. (21)

This estimate of pB can be further improved by iterating the
entire process, eventually converging toward p∗, the critical
pressure. Such a convergence is expected for systems having
a monotonically varying slope for free energy (with respect to
the nucleus size), as was the case for the systems studied in
this work and is likely the case for many nucleation and growth
phenomena.

At any given pressure, the value of ∆v̄sl can be obtained
using the equations of state for either phases. The slope
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ST of the free energy profile can be obtained using an
approach similar to interfacial pinning.28–30 However, instead
of pinning the position of the interface, we pin the nucleus
size by biasing the system with a harmonic potential of the
form

∆UH =
κ

2
(
Ns − Ns,t

)2. (22)

We note that while this biasing potential is similar to the one
traditionally used in umbrella sampling simulations, the pur-
pose here is not to map the local free energy profile but rather
to provide the balancing potential to pin the seed size and iter-
atively converge to the underlying free energy maxima. The
ideal probability distribution associated with such a potential
is a Gaussian distribution centered at N s = N s ,t , noting that
both N s,t and the pinning force constant κ are user defined
values. When applied to a given point A on the total free
energy curve, the resulting probability distribution is given
by

p(Ns) ∝ exp(−(φT + ∆UH )). (23)

In the neighborhood of N s ,t , φT can be assumed to be a lin-
ear function with slope ST . With this assumption, it can be
shown that the p(N s) is also a quasi-Gaussian distribution with
a shifted mean value of N s such that

ST = −κ(〈Ns〉 − Ns,t). (24)

Thus, by calculating the average value of N s in a biased simula-
tion [under the external potential of Eq. (22)], we can determine
the value ST needed for the iterative scheme of Eq. (21) to
obtain p∗. Convergence proceeds as the pressure correction
becomes negligible and ST approaches zero.

C. Simulation details
1. Model

For both hard spheres and gyrobifastigia, we used the hard
pair potential given by

βUij =

{
0 if no overlap
∞ if overlap.

(25)

For spheres, overlaps are detected by evaluating if the center-
to-center distance rij is less than the diameter (σ). For gyrob-
ifastigia, overlaps are checked by employing the separating
axis theorem.34

2. Metropolis Monte Carlo

Metropolis Monte Carlo (MC) simulations were per-
formed in an isothermal-isobaric (NPT) ensemble where the
number of particles, the pressure, and the temperature of the
system were kept constant. As is customary,6,7 for spheres,
the pressure was scaled as p = βpaσ

3, where β = 1
kBT , pa is

the unscaled pressure, kB is the Boltzmann constant, and σ is
the diameter of the sphere. For GBF, the pressure was scaled
as p = βpaa3

c , where ac is the radius of the circumscribing
sphere. Simulations were conducted using periodic boundary
conditions and cycles consisting of N translational moves, 2

isotropic volume moves, and for GBF, additional N rotation
moves. A volume move attempt involves the rescaling of the
simulation box size while maintaining constant the reduced
coordinates of the particles’ centers of mass (and particle orien-
tations for GBF).31 For spheres, the simulation box was cubic,
while for GBF, the box was cuboidal in shape to accommodate
equal number of particle layers of the anisotropic solid-phase
lattice vector. For hard spheres, the degree of supersaturation
was taken and interpolated from the literature.17 For GBF,
the equations of state for the various phases were obtained
and selected degrees of supersaturation (DSS) (= β∆µ) were
evaluated upon integration of suitable branches of those equa-
tions of state, by using the same formulas discussed in earlier
work.3,31

3. Nucleus-size pinning

The biased NPT MC simulations were performed in a
manner similar to those described in prior studies.28 Following
the conventional seeding16,17 methods, an ordered spherical
seed of a chosen size is inserted into a hole carved in a dis-
ordered phase by eliminating any overlapping particles. To
avoid finite size effects, a system sufficiently larger than the
seed size was simulated to ensure that the seed does not inter-
act with its periodic images. For this purpose, the size and
shape of the simulation box were altered as necessary. Both
the ordered seed and the disordered configurations were at
equilibrated volume fractions corresponding to the pressure
of interest as per the equations of state. To save computational
time, the order parameter calculations were performed once
every 100 MC cycles, upon which the modified Metropolis
criteria with the biased potential were used to accept or reject
the trajectory of the last 100 cycles (if rejected, the old tra-
jectory was restored). Once key system properties such as the
cluster size, the specific volume, and, in the case of GBF, the
aspect ratio of the nucleus, have fully converged (usually in
about 3 × 106 MC cycles), the run is stopped and statistics
for the cluster size are evaluated (note that this equilibration
process eliminates potential artifacts from the original seed
preparation). Using Eq. (21), a new estimate of the sought-
after pressure is obtained, and a new iteration of the process is
started.

For the method to work efficiently, the strength of har-
monic potential (κ) needs to be chosen carefully. If too high,
the system would be too constrained to be able to explore
diverse configurations, and statistics thus obtained would not
be representative. If too low, the assumptions regarding the
local behavior of various system properties as implied by the
Taylor series expansions in Eqs. (15) and (16) may not be cor-
rect. An insufficiently strong potential can lead to multimodal
p(N s) distribution, with peaks on either side of the barrier.
This is possible when the unbiased free energy profile exhibits
a high variation in slope near the target nucleus size, allowing
for solutions to Eq. (13) on either side of the peak. This issue
can be remedied by increasing κ and a suitable value can be
found using the following criterion:28

κ >
1

σ2
Ns

, (26)
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where σ2
Ns

is the variance in the N s values for a short unbiased
simulation around the target conditions. For the purpose of the
estimation of barrier heights, since the method uses CNT, it is
more indicated for lower DSS where larger nuclei ensue. Thus,
it is a complementary technique to conventional methods such
as umbrella sampling and forward flux sampling which tend
to be inefficient at low DSS.

4. Umbrella sampling (US)

To provide an independent estimation of the homogeneous
solid-nucleation free-energies for GBFs for comparing esti-
mates from the proposed NSP method, we also implemented
umbrella sampling (US) simulations.3 Using as a reaction
coordinate the size of the greatest cluster of ordered particles
(N s), the transition path from the disordered to the ordered
state is divided into overlapping windows. Each window is
simulated separately with reflective walls and N s is recorded
every 2 MC cycles. Reflective walls are implemented such that
any trajectory moving outside the window at the end of 2 MC
cycles is returned to the configuration prior to the 2 MC cycles,
which is counted again. Statistics obtained from each window
are used to obtain relative free energies for the N s states within
a window. Finally, individual sections are stitched together by
matching values at the boundaries of the windows, keeping the
value for the most frequent entry near N s = 0 as the reference.
All US calculations were performed with a system of 1728
particles.

D. Order parameters
1. Hard spheres

As in previous crystal nucleation simulations of hard
spheres,6,7 we use the size of the largest translationally ordered
cluster as the reaction coordinate. We use the q6 Steinhardt35

order parameter which is defined as follows: For every particle
i, the local bond order parameter, ql,m(i), is defined by

ql,m(i) =
1

Nb(i)

∑l

j=1
Yl,m(θi,j, φi,j), (27)

where Nb(i) is the number of neighbors of particle i, Y l,m(θ,φ)
are the spherical harmonics, θi,j and φi,j are polar and azimuthal
angles between particle i and its neighbor j, respectively, l is
the symmetry index, and the value of m ranges from �l to l. In
this work, we use l = 6. The neighbors of particle i are those
particles which are within the cutoff distance rc = 1.4σ of
particle i. The translational-order correlation between particle
i and its neighbor j, d6(i,j), is given by

d6(i, j) =

∑6
m=−6 q6,m(i)q∗6,m(j)(∑6

k=−6
��q6,k(i)��2

) 1
2
(∑6

l=−6
��q6,l(j)��2

) 1
2

, (28)

where the asterisk (∗) denotes the complex conjugate. Two
particles i and j are defined as translationally connected if
d6(i,j) > 0.7. A particle with at least 7 translational con-
nections is classified as translationally ordered or solid-like.
Solid clusters are identified by the condition that any two

solid-like particles within the rc belong to the same cluster.
The tunable parameters in such order parameters need to be
optimized using criteria described in prior studies.3,7

2. Gyrobifastigia

We found that the Steinhardt order parameters were not
effective to capture the local translational symmetry present in
the ABCD cubic lattice formed by GBFs.31 Hence, we devised
an orientational order parameter that proved to be suitable
to capture the inherent crystal symmetry. It is based on the
observation that in the crystal lattice all constituent particles
have their long-axes aligned. We can then define an orien-
tational order correlation or a “dot-product” similar to d6 as
follows. For a given pair of neighboring particles i and j (i.e.,
within the cutoff distance rc = 1.4a, where a is the side length
of GBF), we define the orientational order correlation dz(i,j)
as

dz(i, j) = |z(i).z(j)|, (29)

where z(i) and z(j) are unit vectors pointing along the long-axis
of particles i and j. dz(i,j) is essentially the magnitude of the
cosine of the angle included between the two axis vectors and
hence varies from zero to 1 for orthogonal to aligned config-
urations, respectively. Note that the correlation is unaffected
by whether the vectors are flipped 180◦ and the operation is
commutative. Particles i and j are considered orientationally
correlated if dz(i,j) > dz,min = 0.95, implying a tolerance of
∼18◦ from a perfect alignment. If a given particle has at least 4
aligned neighbors, it is considered solid-like. If two solid-like
particles are orientationally correlated, then they belong to the
same cluster. The size of the largest orientationally ordered
cluster is used as the reaction coordinate for the nucleation
process.

III. RESULTS AND DISCUSSION
A. Nucleus-size pinning for hard spheres

To validate the NSP method for a well-studied system, we
apply it to hard spheres (HS). The free energy barriers ∆G∗ for
disorder to order transition for HS have been determined via a
variety of methods such as US6 and seeding.17 Thus, our first
objective was to test the barriers and critical nuclei sizes found
by NSP by comparing with those reported in the literature. The
results for various target nuclei sizes are tabulated in Table I
and shown in Fig. 1(a). It can be seen that the NSP-estimated

TABLE I. Nucleus-size pinning for hard spheres. N is the total number of
particles in the system, N t is the target seed size, and pi is the initial guess of
the critical pressure (whose converged value is p∗) and κ is the strength of the
biasing potential as described in Eq. (22).

N N t pi κ p∗

55 183 400 14 0.005 14.42
55 183 600 14 0.0005 14.066
55 143 800 14 0.0005 13.783
55 116 1300 12.5 0.0005 13.37
55 116 1300 14 0.0005 13.42
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FIG. 1. Nucleus-size pinning simulation results for hard
spheres. (a) Critical nucleation pressures (p∗) for various
critical nucleus sizes N∗s as determined by NSP (blue)
and by the seeding method of Espinosa et al.17 (red).
(b) Convergence toward the critical pressure for a target
critical nucleus size of 1300 for different initial pres-
sures of 12.5 (blue) and 14 (red). The values asymptoti-
cally converge toward a common critical pressure value,
with the last step correction on each run being less than
∆p∗ ∼ 0.02.

values provide a good interpolation to the reported estimates,
hence showing a suitable consistency with prior data. It typ-
ically takes 5-6 iterations to obtain convergence within one
percent relative error in the pressure value.

For N t = 1300, the convergence of the algorithm was
tested with different initial guesses for pressure (one higher
and one lower than the reported value), as shown in Fig. 1(b).
The values obtained from either direction are asymptotically
convergent. In practice, one may stop iterations as successive
values are within the desired tolerance, and yet the estimates
from the different starting points may differ by a non-negligible
amount. This is possible if the profile is relatively flat (i.e., the
corresponding Zeldovich factor is low). Convergence to a nar-
rower range of p∗ could be improved by using a weaker biasing
potential that can better resolve weaker slopes near the top of
the barrier.

The associated free energy barriers can be calculated using
Eq. (9), which shall be in agreement with reported results
for seeding.17 These estimates will become increasingly accu-
rate for lower DSS as the critical nucleus becomes larger and
the system approaches the macroscopic phase properties as
assumed in the CNT approach.

B. Gyrobifastigia
1. Umbrella sampling

We performed US calculations to generate reference
results for the crystal critical nucleus size (N∗s ) and free-energy
barrier (β∆G∗) of GBF to test the predictions of NSP (for N∗)
and its combination with the CNT (for β∆G∗). These sim-
ulations generate the complete free energy profile along the
reaction coordinate, from which one can readily obtain N∗s
and β∆G∗.

The results from US are tabulated in Table II. Figure 2(a)
shows the estimated free energy profiles for GBFs at various
pressures. Figure 2(b) shows a comparison of nucleation bar-
riers for GBFs and hard spheres.7 It is observed that for the
same DSS value, GBF has a much higher β∆G∗ than hard
spheres. These large ∆G∗ for GBF may be due to the ten-
dency of neighboring particles to pack in configurations that,
while minimizing excluded volume36 and maximizing pack-
ing entropy,37 are inconsistent with the final ABCD crystal
structure of GBFs. For example, two particles may tend to
match their square facets while maintaining their long axes at

a 60◦ angle [Fig. 2(d)], excluding a volume (to other parti-
cles) larger than that in the ABCD lattice where the particle
long-axes align [Fig. 2(c)]. Such misaligned configurations
can lead to “dead ends” in the nucleation pathway and require
particles to first disassemble to further progress toward the
crystalline global order.4 Such poisoning can even preclude
nucleation as is the case in the isotropic-nematic transition of
colloidal rods;38 we speculate that the coupling of orientational
and translational order in GBFs helps the system overcome
similar local configurational traps. Particle-alignment defects
near the crystal interface likely increase the interfacial ten-
sion; in fact, our estimates shown in Fig. 8 in the Appendix
indicate that γ of GBFs is nearly twice larger than that of
hard spheres. In addition, since for a given size, an aspherical
seed has an associated larger surface area, a larger effective
interfacial contribution to the free energy and a higher bar-
rier height would also be expected. Since estimating larger
β∆G∗ via US or another standard simulation method becomes
more challenging, its calculation for GBFs for DSS = β∆µ <
0.5 would be an especially suitable application for the NSP
method.

Interestingly, the morphology of the nuclei formed for
GBF is significantly aspherical as shown in Fig. 3(a). This
behavior likely stems from the difference in interfacial ener-
gies of the nucleus along directions parallel to the particles’
long axes and perpendicular to it. A feature emerging out of the
geometry of the GBF lattice is that the facets of the anisotropic
nucleus are slanted at an angle of ≈ 73.9◦ as revealed in
Fig. 3(a), inset.

We also investigated how the shape anisotropy of the crys-
tal nucleus evolved as it grew beyond its critical size. While
the nucleus aspect ratio could increase indefinitely with size to

TABLE II. Results for barrier height (β∆G∗) and critical nucleus size (N∗s )
from umbrella sampling (US) calculations for gyrobifastigia for various
pressures (p), along with their corresponding degrees of supersaturation
(β∆µ).

Reduced pressure (p = βpavp) DSS (β∆µ) β∆G∗ N∗s

12.5 0.684 73.0 252
13 0.873 46.1 153
14 1.244 19.0 48
15 1.608 8.6 27
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FIG. 2. Nucleation free-energy barriers for gyrobifasti-
gia using umbrella sampling. (a) Representative free
energy (β∆G) vs. nucleus size (Ns) (for different pres-
sures (p∗). (b) Nucleation barriers β∆G∗ for gyrobifasti-
gia (diamonds) and for hard spheres7 (circles) at various
DSSs. Configurations of gyrobifastigia particle pairs in
(c) the ABCD crystal and (d) a non-crystalline high local
packing entropy state.4,37

become filamentous in shape, it was conjectured that it main-
tained a quasi-octahedral shape, based on the characteristic
slant of the nucleus facets. To test this conjecture, we sim-
ulated the growth of a post critical nucleus up to a size of
N s ≈ 8000 (over 50 times its critical size) at which point local
features are smoothed out and macroscopic behavior could be
considered emergent. We observed that the shape anisotropy
persists even for such large nuclei and the aspect ratio remains
about the same [Fig. 3(b)]. The presence of a nearly invariant
nucleus geometry validates the use of the CNT equation (9) to
estimate ∆G∗. We thus estimate ∆G∗ from the known critical
nucleus sizes (from US) using Eq. (9); the results and their
error bars are shown in Fig. 4. We find that CNT tends to over-
estimate ∆G∗ by a relatively constant deviation of ∼10kBT,
but the relative deviations decrease as DSS is reduced. These
trends are expected, as the nuclei tend to have a larger size

for lower DSS and hence approach the macroscopic limiting
behavior that CNT assumes. Note that one could use a ∆G∗

value obtained from US, ideally corresponding to large N∗s
(and small∆µ), to fine-tune the order parameter definition (i.e.,
parameters rc and dz,min in Sec. II D 2) until the N∗s calculated
in the US simulation agrees with the N∗s calculated via the CNT
equation (9). While in this way the US and CNT curves in Fig. 4
would be brought in closer agreement, this would not neces-
sarily provide an independent test of the quality of the order
parameter or of the general applicability of CNT.7 Regardless
of such refinements, ∆G∗ estimates from the critical nucleus
size [via Eq. (9)] are expected to have large uncertainties for
smaller nucleus sizes (when errors in estimates of interfacial
particles can contribute significantly to the nucleus size) and
become increasingly accurate as lower DSS values (and hence
larger cluster sizes) are probed.

FIG. 3. Morphology of nuclei for gyrobifastigia. (a)
Near-critical nucleus (N∗s ≈ 150) obtained by umbrella
sampling at p∗ = 13, evidencing its aspherical, elongated
shape along the particle long-axis. Inset: The nucleus is
approximately faceted at a specific angle = tan�1(2

√
3).

In the inset, a is the side length of a gyrobifastigium. (b)
A quasi-octahedron shaped (post-critical) nucleus corre-
sponding to Ns ≈ 8000. Particles are colored according
to the deviation from the director of the nucleus—from
blue to red as the alignment decreases.
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FIG. 4. Comparison of CNT-estimated nucleation barriers (β∆G∗) with those
calculated using umbrella sampling (US) as a function of degree of supersat-
uration (DSS). The CNT values are obtained using Eq. (9) by inputting N∗s
values from umbrella sampling.

2. Nucleus-size pinning for gyrobifastigia

Having established the presence of anisotropic solid
nuclei and the applicability of the CNT to GBF in Sec. III B 1,
we now demonstrate how the NSP method can be implemented
as an alternative and complement to US to study the shape and
size of the critical nuclei and to estimate nucleation barriers.
The simulations were performed for a range of nucleus sizes

TABLE III. Results from nucleus-size pinning method for GBF.

pi N N t κ p∗ DSS = β∆µ β∆G∗

14 3373 100 0.01 13.34 0.977 48.875
11.5 1666 100 0.05 13.35 0.9813 49.065
14 1664 50 0.05 13.9004 1.1844 29.61
14 3373 150 0.01 12.9083 0.8155 61.163
14 3344 300 0.01 12.41 0.6275 94.125
14 3334 500 0.005 12.1205 0.5149 128.725

that overlaps and extends beyond the upper bound explored
before using US. The results are shown in Table III. As shown
in Fig. 5(a), the relationship between critical nucleation pres-
sure and N∗s as determined by NSP agrees well with that
obtained from our US calculations performed earlier. Simi-
larly, Fig. 5(b) shows that NSP with CNT produces free-energy
barrier heights which slightly overestimate those found by US,
as was earlier observed (in Fig. 4).

The converged values obtained from iterations started
from different initial pressure guesses were quite close in the
cases examined, presumably due to a sharper peak of the free
energy profile as compared to the calculations for hard spheres
discussed in Sec. III A. Since there is no constraint on the shape
of the nucleus but only on its size, its shape should eventu-
ally tend to the “natural” one. Indeed, Fig. 6 shows that the
shape of the GBF nuclei as determined by NSP has geome-
tries consistent with those found earlier via US, becoming

FIG. 5. Comparison of NSP (blue) and umbrella sam-
pling (US, red) for GBF. (a) Comparison of critical condi-
tions: p∗ and N∗s are the critical pressure and nucleus size,
respectively. (b) Comparison of free energy barrier height
values (β∆G∗) as a function of degree of supersaturation
(β∆µ).

FIG. 6. Various critical nuclei of GBF
as obtained using the NSP method for
Ns ≈ (a) 50, (b) 100, (c) 150, (d) 300, and
(e) 500, with aspect ratios close to 2.0
(1.9, 2.0, 1.9, 2.0, and 2.1, respectively).
Particles are colored as in Fig. 3.
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increasingly quasi-octahedron-like as the size increases and
having an aspect ratio of∼2 found from the principal moments
of the nucleus inertial tensor, as a ratio of the longest axis to
the mean of the shorter ones. This aspect ratio would slightly
increase for much larger nucleus sizes [it is still 2.1 for the one
in Fig. 3(b)] if the aberrations at the top and bottom vertices
of the quasi-octahedron were to smooth out.

IV. CONCLUSIONS

In this study, we introduced the nucleus-size pinning
(NSP) method which, as an extension of the seeding tech-
nique,17 is designed to iteratively converge to the critical
state in a nucleation process. We first validated the method
by reproducing the known results for hard spheres. We then
demonstrated the robustness of the method by identifying
non-trivial anisotropic growth of nuclei during disorder-to-
order transition in gyrobifastigia. By combining NSP with
a formulation of classical nucleation theory that allows the
treatment of an aspherical nucleus, we were able to deter-
mine nucleation barriers for gyrobifastigia in a range of small
DSS where conventional methods would be computation-
ally very expensive. The method allows the “natural” seed
geometry to be attained and the critical state to be read-
ily identified, as demonstrated here for gyrobifastigium. The
proposed method may even prove useful in studying the tran-
sition state in situations where a global order parameter rather
than a local order parameter (as in classical nucleation) is
used to describe the phase transition process. The proposed
NSP approach can be easily applied to other systems for the
determination of the critical states provided suitable order
parameters are employed. For example, applications should
be readily implementable to nucleation processes where the
degree of metastability (or DSS) is defined by departures of
temperature (as opposed to pressure) from the coexistence
conditions. Moreover, NSP can help reveal important
microstructural features of transition states, which might be
non-trivial to hypothesize a priori. Altogether, NSP provides
a means to effectively and unambiguously target the simula-
tion of the critical transition state in a nucleation process, one
that complements existing rare event sampling techniques. The
iterative process can be further automated such that the equi-
libration (at each iteration step) is checked via statistical tests
for normality39 and by pre-specifying a tolerance for global
convergence.

While the NSP method provides a more robust way for
establishing the conditions for cluster criticality than the tra-
ditional seeding approach, it retains certain limitations. First,
it requires a valid model (such as CNT) to relate the criti-
cal nucleus size to the nucleation free-energy barrier. Only
in the presence of an applicable model can we determine
other properties of interest such as interfacial energy. Nev-
ertheless, even in the absence of such a model, the method
is still able to describe the critical nuclei at different DSS,
whose characterization may be of interest in various con-
texts, e.g., to identify differences in structural order between
the core and interfacial regions of potential configurational
bottlenecks associated with transition states.40–42 Second, the
convergence of the algorithm is dependent upon the “flatness”

of the target free energy profile. If there is a broad region
(in comparison to the spread of the biasing harmonic poten-
tial) with nearly constant free energy around the barrier top,
then the method can end up identifying any of those states
as the critical one (within a user-specified tolerance). Note,
however, that such flat barrier tops would pose challenges to
many simulation methods and entail an intrinsic ambiguity to
the definition of the critical nucleus. Third, and in common
with other methods (like umbrella sampling), NSP requires
the use of order parameters that are a good approximation to
the reaction coordinate that best describes the transition pro-
cess.43 In fact, the choice of nucleation order parameter (e.g.,
the criteria to decide which particles are solid-like) affects not
only the effective height of the free-energy barrier but also its
flatness (as pertaining to the second limitation listed before).
Finally, variants of the NSP method can be implemented
to improve the convergence of the iterative scheme, e.g.,
to more explicitly account for the dependence of interfacial
free energy on supersaturation conditions (as discussed in the
Appendix).
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APPENDIX: INTERFACIAL CONTRIBUTION TO FREE
ENERGY DERIVATIVE

In Sec. II B, we assumed that the interfacial-energy con-
tribution to the slope CA in Eq. (16) can be neglected for small
changes in pressure ∆p∗ < 1, an assumption which is conse-
quential to the convergence properties of the NSP iterations to
the critical conditions but not to the final results. We note that
this assumption is consistent with earlier studies that found the
variation of interfacial energy (γ) to be small (i.e., less than
5%) for changes∆p∗ < 117 and that in NSP iterations the usual
step corrections in pressure are much smaller than ∆p∗ < 0.5.
Nevertheless, in this section, we re-examine this assumption by
first rearranging Eq. (14) to obtain the interfacial contribution
to the slope (Si) as

Si =
dφi

dNs
= ST − (µsolid − µliquid) = ST − ∆µsl. (A1)

Thus, for a simulation performed at a given pressure, Eq. (A1)
can be used to evaluate Si, the interfacial contribution to the
slope (note that this involves a contribution from interfacial
tension and from nucleus geometry, either of which may vary
with pressure). One such evaluation is illustrated in Table IV
and Fig. 7 for a series of iterations in the case of hard spheres
for a target cluster size of N t = 1300.

It can be seen in Fig. 7 that the major contribution to the
variation of the total slope (ST ) is through the variation of
∆µsl = DSS, while the interfacial contribution remains nearly
constant ∼0.178, consistent with the assumption of Eq. (16).

Alternative implementations of the NSP could explicitly
take into account the variation of γ with pressure. For instance,
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TABLE IV. Calculation of interfacial contribution to the slope from data of
total slope and chemical potential difference for various iterations of NSP for
hard spheres with N t = 1300.

Iteration pi ∆µsl ST Si

1 14.00 �0.235 �0.054 0.180
2 13.72 �0.207 �0.029 0.178
3 13.58 �0.193 �0.017 0.176
4 13.49 �0.184 �0.005 0.179
5 13.46 �0.181 �0.003 0.178
6 13.45 �0.180 �0.003 0.178
7 13.44 �0.179 �0.003 0.176
8 13.42 �0.177 0.001 0.179

FIG. 7. Key contributions to the variation of the slope ST of the free energy
as a function of pressure. The interfacial contribution Si is nearly constant.

one can use the known values of Si =
dφi
dNs

at two or more nearby
pressures (from the iterative steps) to obtain an extrapolation
model Si = Si(p∗), and use such a model to improve the estimate
of p∗ for the next iteration.

As a related extension, we note that the NSP method and
CNT can also be combined to extract the interfacial tension γ
from Si. Assuming for concreteness that the nucleus is spher-

ical, then kA = γ
(

36π
Ntρ

2
s

) 1
3

and Si =
2kA

3N
1
3

, from which it follows

that

γ = Si

(
3Nt ρ

2
s

32π

) 1
3

. (A2)

Equation (A2) can be used to estimate γ at successive steps
in the NSP iteration process, as shown in Fig. 8(a) for hard
spheres. The results are in line with what has been reported in
prior studies using other techniques.6,17,44,45 The intermediate
calculations, however, may be less reliable than that for the
converged critical condition as a CNT fit may be more suitable
near the top of the free-energy barrier than away from it.6

Similar calculations for γ could be performed for aspherical
nuclei, perusing explicit expressions for volume and surface
area of a nucleus of known geometry. For example, for GBF, if
we approximate the nuclei as a prolate spheroid with an aspect
ratio ∼2 (see Fig. 6), the interfacial tension can be written as

γ =
Si

4π
3
√

3
+ 1

(
3Nt ρ

2
s

8π

) 1
3

. (A3)

In the reduced units employed, γ values for GBFs [Fig. 8(b)]
appear to be larger than those for hard-spheres [Fig. 8(a)] for
comparable DSS, a difference that correlates with the differ-
ence in free energy barrier heights shown earlier in Fig. 2(b).
The intermediate-step γ estimates using this approach are also
shown in Fig. 8(b). Note, however, that isolating an average,
crystal-facet independent γ for the GBF nucleus should be
seen rather as an approximate calculation, especially for small
nuclei (large p∗) where their shape may depart vastly from
a spheroid, possibly causing the non-monotonous trend for
p∗ > 13. Furthermore, the error bars were found to be rather
large, i.e.,∼±0.05 for the initial pressure p∗ = 14, which should
be representative of those of nearby points where equilibration
was less converged. Within error bars then, the data available
does not allow us to ascertain whether for p∗ > 13 the γ trend
is non-monotonous or simply approaches a plateau.

Finally, once we have an estimate for Si, and hence kA, we
can estimate N∗s for the corresponding pressure using Eq. (8).
Note that we can apply such a CNT-based approach to the
estimate N∗s in a single simulation, irrespective of whether
convergence to the critical condition has been reached. We
tested this idea in Fig. 9 for hard spheres and GBF, by compar-
ing the NSP+CNT based estimates of N∗s from intermediate
steps and from the converged values and with data from other
methods. We observe a good agreement in the results among

FIG. 8. Interfacial tension (γ) vs. pressures (p∗) from
various simulation methods. (a) Hard spheres, comparing
NSP + CNT results for (converged) final pressure values
and intermediate step values (excluding the first itera-
tion), seeding method,17 US+CNT,6 cleaving walls (CW)
approach,45 and capillary fluctuation (CF) method.44 (b)
GBFs for NSP+CNT results.
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FIG. 9. Comparison of estimates of critical conditions
in the pressure (p∗) vs. nucleus size (N∗s ) plane, obtained
from seeding,17 US = umbrella sampling, the NSP
described in the main text, and the NSP+CNT approach
described in the Appendix. (a) Hard spheres. (b) Hard
gyrobifastigia.

the various techniques, suggesting the validity of CNT for the
systems under study.
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