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Solid-phase nucleation free-energy barriers in
truncated cubes: interplay of localized
orientational order and facet alignment†

Abhishek K. Sharma,‡ Vikram Thapar‡ and Fernando A. Escobedo *

The nucleation of ordered phases from the bulk isotropic phase of octahedron-like particles has been

studied via Monte Carlo simulations and umbrella sampling. In particular, selected shapes that form

ordered (plastic) phases with various symmetries (cubic and tetragonal) are chosen to unveil trends in

the free-energy barrier heights (DG*’s) associated with disorder to order transitions. The shapes studied

in this work have truncation parameter (s) values of 0.58, 0.75, 0.8 and 1. The case of octahedra (s = 1.0)

is studied to provide a counter-example where the isotropic phase nucleates directly into a (Minkowski)

crystal phase rather than a rotator phase. The simulated DG*’s for these systems are compared with

those previously reported for hard spheres and truncated cubes with s = 0.5 (cuboctahedra, CO) and

s = 2/3 (truncated octahedra, TO). The comparison shows that, for comparable degrees of supersaturation,

all rotator phases nucleate with smaller DG*’s than that of the hard sphere crystal, whereas the

octahedral crystal nucleates with a larger DG*. Our analysis of near-critical translationally ordered nuclei

of octahedra shows a strong bias towards an orientational alignment which is incompatible with the

tendency to form facet-to-facet contacts in the disordered phase, thus creating an additional entropic

penalty for crystallization. For rotator phases of octahedra-like particles, we observe that the strength of

the localized orientational order correlates inversely with DG*. We also observe that for s 4 0.66 shapes

and similar to octahedra, configurations with high facet alignment do not favor high orientational order,

and thus DG*’s increase with truncation.

1 Introduction

Recent studies1–10 have made remarkable progress in under-
standing the self-assembly of anisotropic particles. By virtue of
their geometry, anisotropic particles have configurations that
depend on the orientation of individual particles; i.e., possess
orientational degrees of freedom. Examples of experimentally
synthesizable anisotropic particles include branched particles,11,12

faceted polyhedra,13–19 patterned particles,20–23 and rod and ellipsoid
shaped particles.24–27 Among them, polyhedral particles are
being extensively studied as they have well defined geometries
that are amenable to both synthesis and modeling. Over the
years, simulations have proven very useful in exploring the rich
phase behavior of polyhedral particles of a diversity of shapes
and for various extents of size polydispersity.4–10 Using Monte
Carlo simulations in the isothermal–isobaric ensemble, it was
first shown4 that some of the hard polyhedral particles that

tessellate space undergo transitions from an disordered phase
to a fully translationally and orientationally ordered phase via
partially ordered phases termed ‘‘mesophases’’, which are defined
as phases whose structural order is intermediate between dis-
ordered liquids and ordered crystals. Unlike spherical particles
that form ordered phases having only translational order, the
orientational degrees of freedom in anisotropic particles allow the
formation of phases that may or may not be orientationally
ordered. Thus, examples of mesophases of anisotropic particles
include liquid crystals that are orientationally ordered but
translationally disordered, and rotator plastic crystals that are
translationally ordered but orientationally disordered.

One of the families of shapes that are readily synthesizable
using a polyol process17,18 is that of truncated cubes, defined by
a truncation parameter, s, which varies from cubes (s = 0) via
cuboctahedra (s = 0.5) to octahedra (s = 1). In this family, shapes
with s o 0.5 are termed ‘cube-like’, while shapes with s 4 0.5
are termed ‘octahedron-like’. Recent computational studies7,10

have rigorously examined the phase behavior of the truncated-
cube family via simulation and revealed a rich diversity in
crystal structures and plastic crystal mesophases. In particular,
for octahedron-like particles, i.e., shapes with s 4 0.5, the
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lattice symmetry of the plastic mesophases transforms from
body-centered tetragonal (BCT) to body-centered cubic (BCC) as
the truncation is increased. This provides a simple illustration
of how changes in faceting influences the stability of different
lattice structures. Along with mapping the phase behavior, it
would be interesting to explore how such changes in particle
truncation and rotator lattice symmetry influence the kinetics
of disorder-to-order phase transitions. Thapar and Escobedo8

performed a computational study to explore the homogeneous
nucleation kinetics from a disordered phase to a rotator phase
of two shapes of the truncated cube family, namely, truncated
octahedra (TO) (s = 2/3) and cuboctahedra (CO) (s = 0.5). It was
shown that both these shapes nucleate the ordered phase more
rapidly than hard spheres (HSs) at comparable degrees of
supersaturation. It is unclear, however, whether other particle
shapes in the same truncated cube family follow a similar trend
or whether particular truncations are optimal in facilitating the
nucleation of the solid phase.

The homogeneous nucleation of an ordered phase from an
isotropic phase at small or moderate degrees of supersaturation
is a rare event – it requires a critically large domain within the
isotropic phase to seed a stable ordered nucleus. The unlikeliness
of such a rare event makes its quantitative characterization using
conventional brute force simulations computationally inefficient.
Hence, many sophisticated sampling methods28–39 have been
developed to overcome this challenge. Among them, the umbrella
sampling (US) method has been widely used to estimate the
free energy barrier height associated with nucleation.40,41 The
technique involves biasing the system such that the rare events
are sampled more frequently with a reasonable computational
effort. The US calculations are performed along a reaction
coordinate that tracks the progress of the nucleation process.
Most crystal nucleation studies of hard particles have successfully
employed the size of the largest solid like cluster8,40–42 in the
system as the reaction coordinate. Once the biased probabilities
of forming clusters of different sizes are known, they are unbiased
to obtain the free energy as a function of the reaction coordinate.

In this work, we apply US to estimate the nucleation barriers
for the transition from a disordered phase to an ordered phase
for hard octahedron-like (s 4 0.5) particles. In particular, the
shapes studied are octahedrons (Octs) and truncated cubes
with truncation parameter s = 0.58 (TC58), s = 0.75 (TC75) and
s = 0.8 (TC80). TC58, which is the truncated cube with minimum
asphericity,10 forms a plastic body-centered tetragonal (PBCT)
lattice, while the other two form a body-centered cubic (PBCC)
rotator phase. All three shapes undergo a first-order phase transi-
tion from an isotropic phase to a plastic crystal phase, whereas for
Oct the system undergoes a phase transition from an isotropic
phase to a Minkowski crystal phase.7 To allow meaningful com-
parisons, we use US to simulate these transitions at comparable
degrees of supersaturation, which quantifies the thermodynamic
driving force to nucleation. For our comparisons, we will also
peruse rotator-phase nucleation data for shapes with s = 0.5 (CO)
and s = 2/3 (TO) from a previous simulation study.8

Our selection of methods and analysis is appropriate for the
systems of interest as the phase transitions involved were well

described by classical nucleation pathways. It should be
noted, however, that non-classical pathways could also occur,
especially for anisotropic particles,4 where independent
orientational and translational order may occur at different
stages in the ordering process and lead to metastable or stable
intermediary mesophases. This is important, for example, in
isotropic-to-smectic phase transitions in hard rods43 where two-
step processes may occur with orientational order preceding
translational order or vice versa. The occurrence of more
complex ordering pathways is also well known in two-step
freezing processes44–48 where the particles form an intermedi-
ate dense liquid phase before translational order ensues. The
existence of multistage mechanisms can be revealed by a
detailed analysis of transition state configurations and transi-
tional pathways.8,40

The rest of this paper is organized as follows. In Section 2 we
describe the model used to simulate hard polyhedral particles,
our choice of order parameter, and other relevant simulation
details. In Section 3 we show and discuss our simulation results
for nucleation free-energy barriers. Finally, in Section 4 we provide
some concluding remarks.

2 Methods
2.1 Model

In this work, we use a hard particle pair potential given by:

bUij ¼
0 if flag ¼ 1

1 if flag ¼ 0

(
(1)

where Uij is the interaction potential between particles i and j,
and b = 1/kBT (kB is the Boltzmann constant and T is the
temperature). The value of the variable flag is set to 1 if particles
i and j do not overlap with each other, otherwise flag = 0. The
overlapping of particle i with particle j is checked through the
separating axis theorem49 (which states that two convex shapes
do not overlap, if there exists an axis on which their projections
do not intersect).

2.2 Order parameters

For all the transitions studied in this work, the order parameter
used is the number of particles in the largest translationally
ordered cluster, ntr. The crux in estimating this order para-
meter is to determine whether a given particle is ‘‘solid-like’’;
i.e., translationally ordered. This is determined using the local
bond order parameter analysis proposed by Steinhardt et al.50

and used in several nucleation studies (e.g., for hard spheres40–42

and for TO and CO8). For every particle i, the local bond order
parameter, ql,m(i), is defined by

ql;mðiÞ ¼
1

NbðiÞ
Xl
j¼1

Yl;m yi;j ;fi;j

� �
(2)

where Nb(i) is the number of neighbors of particle i, Yl,m(y,f)
are the spherical harmonics, yi,j and fi,j are the polar and
azimuthal angles between particle i and its neighbor j respectively,
l is the symmetry index and the value of m ranges from �l to l.
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In this work we use l = 6. The neighbors of particle i are those
particles which are within the cutoff distance rc of particle i;
here we chose rc E 1.2 times the distance to the first peak of the
radial distribution function. The translational-order correlation
between particle i and its neighbor j, d6(i, j) is given by:

d6ði; jÞ ¼

P6
m¼�6

q6;mðiÞq6;m�ð jÞ

P6
m¼�6

q6;mðiÞ
� �2��� ���1=2 q6;mð jÞ

� �2��� ���1=2 (3)

where the asterisk denotes the complex conjugate. Two particles
i and j are defined as translationally connected if d6(i, j) 4 dc,
which is the translational order correlation cutoff. In this case,
we use a value of dc = 0.7 as used in our earlier studies.8

A particle with at least zc = 7 translational connections is
classified as translationally ordered or solid-like. A solid-like
cluster is identified using a criterion that if two solid like
particles are within the cutoff distance, rc, then they belong
to the same cluster. This definition of the order parameter
involves three tunable parameters: rc, dc, and zc. In an earlier
study,41 it was demonstrated that umbrella sampling free-
energy barrier calculations that used this definition of the order
parameter are robust and relatively insensitive to variations of
these tunable parameters. Consistent with such studies,8,41 our
preliminary tests also showed that while variations in such
parameters altered the shape of the free energy landscape
sampled (e.g., the location of the critical nucleus size), the free
energy difference between the transition state at the barrier top
and the initial state remained largely unaffected.

As a complementary metric of order, for selected cases we
also evaluated the global orientational order parameter, P4, of
the particles belonging to ntr:

P4 ¼max
n

3

14N

X
i

P4 ui � nð Þ

¼max
n

3

14N

X
i

35 cos4 tiðnÞ � 30 cos2 tiðnÞ þ 3
� � (4)

where ui is the unit vector along a relevant particle axis and n is
a director unit vector which maximizes P4 (see details in John
et al.51). The summation is performed over all three axes for
all ntr particles in the nucleus. In this formulation of P4, P4 = 1
corresponds to perfect orientational order.

In order to study local orientational order, we use the I4

orientational order parameter52 that captures the relative orienta-
tion of a particle to an arbitrary reference coordinate frame. It uses
spherical harmonics similar to q6 but for angles associated with
individual particle axis orientations instead of the bond orienta-
tion between two neighboring particles. In its normalized form
it is evaluated for a given particle j as:

I4;mð jÞ ¼

P3
i¼1

Y4;m yi;fið ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP4
m¼�4

P3
i¼1

Y4;m yi;fið Þ
����

����
2

s (5)

where Y4,m(yi,fi) are spherical harmonics with symmetry index 4,
and yi and fi are the polar and azimuthal angles of the particles
axis i to the reference coordinate frame. Analogous to d6, the
dot product in I4 between two particles i and j is defined as:

d4ði; jÞ ¼
X4
m¼�4

I4;mðiÞ � I4;m�ð jÞ (6)

where the asterisk (*) implies a complex conjugate. The two
particles are assumed to be aligned if d4(i, j) 4 0.7. We use I4 in
conjunction with q6 such that two neighboring particles are
bonded if d4(i, j) 4 0.7 and d6(i, j) 4 0.7 simultaneously. Similar
to q6, a particle with at least 7 translational connections is
termed solid-like, and if two solid like particles are within the
cutoff distance, rc, then they belong to the same cluster.

2.3 Facet alignment measure

It has been speculated in previous studies19,53 that neighboring
faceted particles might tend to align their facets in order to
minimize their excluded volume and maximize their packing
entropy. However, since calculation of the volume excluded by
particles is a non-trivial, computationally intensive task, here
we introduce a simpler surrogate metric that quantifies the
extent of facet-to-facet matching, whose values are expected to
correlate with the smallness of the excluded volume. Indeed, we
exploit the fact that a signature of local efficient packing of
particles is that the nearest facets tend to align parallel to each
other, such that they would nearly completely overlap if viewed
normal to one of the facets. Accordingly, we define a facet
alignment measure, D(i, j), for any two neighboring particles i
and j. In essence, it is the overlap area of the nearest facets
(defined by the minimum centroid to centroid distance) when
one is projected onto the other (Fig. 1). Since this operation can
be performed in two different ways (i.e. projecting the facet
from i onto the plane of the facet from j, and vice versa), the
maximum of the two areas is taken to be the final value of
D(i, j), thus making the operation commutative. The larger the
value of D, the higher the facet alignment. D(i, j) is scaled with
respect to the maximum possible value for a given system (i.e.,
the area of the largest facet). In our calculations, neighboring
particles were defined based on a Voronoi construction.54 Since
for any particle shape with facets of disparate sizes, the larger
surface-area facets are expected to have a stronger tendency
toward facet-to-facet alignment, for s Z 2/3 only the hexagonal
faces are considered for the nearest facet calculations.

It is important to note that D is in principle independent of
local orientational order in that they need not be correlated,
i.e., there may be configurations with high facet-alignment but
low orientational order and vice versa.

2.4 Simulation details

Metropolis Monte Carlo (MC) simulations were conducted in
a cubic cell with periodic boundary conditions and N = 2744
particles. The simulations are performed at constant reduced
pressure, P* = bPv (v is the volume of a shape), and constant
temperature, T. Each MC cycle consisted of N translational
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moves, N rotational moves, and one volume move. All trial
moves are accepted according to the Metropolis criterion,55

which requires ruling out overlaps between any two particles
(via the separating axis theorem49). Each value of pressure, P*,
corresponds to a given value of degree of supersaturation (DSS),
which is estimated via

DSS = b|Dm| (7)

where Dm is the difference in chemical potential between the
metastable liquid and the stable solid. |Dm| represents the thermo-
dynamic driving force for nucleating the new phase. The details
for estimating DSS are provided in earlier publications.8

Since we focus on DSS conditions where brute force MC
simulations are impractical to estimate the free energy barrier
height to nucleation, DG*, we employed umbrella sampling
(US)30,31 simulations to do so. US is performed by partitioning
the phase space along the order parameter ntr into a set of
windows with overlapping boundaries. For each window, MC
simulations are performed with rigid reflexive walls at the
boundaries and keeping track of the number of times the
system visits a given value of ntr. While inside a given window,
ntr is allowed to change unbiased. To reduce computational
costs, instead of evaluating the order parameters for every
cycle,40 we measure ntr every 2 MC cycles. If the proposed move
entails the change n(o)

tr - n(n)
tr and n(n)

tr falls outside the window,
the entire 2 MC cycle trajectory is rejected and the system is
reset to the earlier configuration within the window which adds
a visit to n(o)

tr . The histogram of visits H(ntr) thus collected is
unbiased and it is directly used to estimate the free energies for
each window via bG(ntr) B �ln H(ntr) and the full free-energy

profile is then obtained by matching the free-energy values
obtained at the boundaries between consecutive windows; free
energy values are shifted so that it is zero for ntr = 0 as a reference.

3 Results and discussion
3.1 Crystal nucleation of octahedrons (Octs)

To study the isotropic to crystal nucleation in Octs, US calcula-
tions were performed at various degrees of supersaturation
using the largest q6-based translationally ordered cluster as
the reaction coordinate. The free energy barriers are tabulated
in Table 1. Fig. 2 shows the free energy versus ntr for DSS = 0.49,
showing that free-energy barrier height, DG*, is approximately
66.8kBT.

Fig. 3 shows a comparison of nucleation barriers of isotropic
to Minkowski crystal transitions in octahedrons with those for
the isotropic to FCC crystal transition of HSs.41 The comparison
shows that the nucleation barriers for octahedrons are much
larger than those of HSs for comparable DSS values. In order to
understand why octahedra may have more difficulty ordering
than HSs, we look for some clues in the microstructure of
the near-critical nucleus. For this we collected and analyzed
configurations from the US window near the top of the barrier
(i.e., for 180 o ntr o 200 in Fig. 2). The orientation distribution
function of the particles in these near-critical nuclei was
obtained by plotting the components of all particle axes on

Fig. 1 Definition of the facet alignment measure, D, demonstrated for
octahedra. (a) Nearest facets (green) are identified such that the centroid-
to-centroid distance is the minimum. (b) One of the facets is projected
(red) upon the plane of the other. The intersection of the projection with
the other facet is obtained (blue). (c) The in-plane area of the intersection
is calculated and normalized relative to the area of the triangular facet (the
largest facet in the system). The calculation is repeated in the reverse order
of facets and the higher value is taken. Sample configurations are shown
for near-complete facet-to-facet alignment (D B 1) in (d) and a staggered
orientationally-ordered configuration present in the Minkowski crystal
(D B 2/3) in (e).

Table 1 Nucleation barriers for octahedra using umbrella sampling

Reduced
pressure
(P* = bps3)

Degree of
supersaturation
(bDm)

Order
parameter

Barrier
height
(bDG*)

Critical
nucleus size

10.64 0.30 q6 121.0 416
11.33 0.49 q6 66.8 196
12.0 0.71 q6 41.2 103
11.33 0.49 q6 - I4 68.2 172

Fig. 2 Free-energy profile, DG/kBT, versus ntr obtained using US simula-
tions for Octs at P* E 11.33 (DSS = 0.49).
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the surface of a unit sphere. As shown in Fig. 4(a), the particle
orientation distribution clearly shows well-defined clusters at
six different locations, indicative of preferential orientational
alignment. This is further confirmed by the high value of global
orientational order parameter P4 E 0.46 for the particles in the
nucleus. Although the order parameter ntr is solely derived from
translational correlations in a system, these results show that
the particles in the nucleus tend to also pack with orientational
alignment. To further validate the claim that orientational
order is a characteristic feature of this transition, we performed
the US simulation using a conjunction of q6 and I4 to define the
ordered cluster to capture both orientational and translational
order present (see the Methods section). The resulting nuclea-
tion barrier for P* = 11.33 was still found to be higher than that
of hard spheres and close to what was determined using q6

alone (see Table 1). Thus, in contrast to the hard sphere case,
orientational alignment is an essential feature of the crystalline
nuclei in octahedra. Similar to the Minkowski crystal being
nucleated, this orientational alignment has incomplete face-to-
face alignment as seen in one of the snapshots of the portion of
a ntr = 189 nucleus shown in Fig. 4(b): the triangular faces are
primarily staggered with respect to each other.

We now examine how local orientational order correlates
with the facet-to-facet matching in the Minkowski crystal. For
local orientational order we calculate d4 from eqn (6) between
neighboring particles. Parameter I4 (see eqn 5) describes the
preferential orientational alignment into six clusters of octahedral
symmetry in Fig. 4(a). As shown in Fig. 4(c), d4 captures the
orientational alignment present in the Minkowski crystal in
contrast to the disordered phase. Fig. 4(d) shows the variation
in d4 with respect to the facet alignment measure, D. It is evident
that for D 4 2/3 increasing alignment correlates with a decrease
in orientational alignment. Thus, the presence of configurations
with neighboring particles aligning their facets in the isotropic
phase hinders the orientational alignment needed to grow the
Minkowski crystal. In order to nucleate into and grow the
Minkowski crystal, the spontaneous orientational fluctuations
in the isotropic phase must stir configurations away from

complete face-to-face alignment. This additional restriction in
the nucleation pathway reduces the probability of particles to
assemble into the crystalline structure, hence increasing the
free-energy barrier height for crystal nucleation in octahedra
relative to hard spheres.

3.2 Rotator-phase nucleation of TC58, TC75 and TC80

In this section we compare the nucleation barriers for isotropic-
to-plastic solid transition for particles with various degrees of
truncations and degrees of supersaturation. For these compar-
isons, we group our results into shapes lying into two ranges:
the first for 0.5 r s r 0.667, and the second for 0.75 r s r 0.8.
The main reason for this grouping is that they correspond
to shapes that form different types of rotator phase structures:
the first group forms BCT-lattice, weakly-orientationally ordered
rotators, while the second group forms a BCC-lattice, moderately-
ordered rotator.10 Fig. 5 and 6 and Table 2 show our results for
s = 0.58, 0.75 and 0.8 as determined by US calculations using
the largest q6-based translationally ordered cluster as the reac-
tion coordinate.

In order to compare nucleation free-energy barriers for
shapes with different s for the same value of DSS = 0.34
(Fig. 6), we perform cubic spline interpolation for the data
obtained here and other available data reported in previous
studies8 for cuboctahedra (s = 0.5) and truncated octahedra
(s = 2/3). This particular value of DSS is chosen because it leads
to barriers of the order of B20kBT, making them easier to
estimate reliably via US (compared to very high or very small
barriers which carry larger uncertainties) (Fig. 7).

In an earlier publication8 we highlighted the role of orienta-
tional order in catalyzing the nucleation of rotator phases
in anisotropic particles, including CO and TO. The degree
of orientational order is reflected in the presence of certain
preferred orientations in the rotator phase. As long as such
preferred orientations are a subset of those orientations pro-
moted by the natural tendency for facet-to-facet contacts
between particles, the anisotropy of particle orientational dis-
tribution in the rotator phase can be seen as an indicator of
the catalytic effect of local orientational order. As has been
demonstrated,10 all the rotator phases generated by particle
shapes from the truncated cube family have a non-uniform
orientational distribution and hence it is expected that the
nucleation barriers for all cases considered here are lower than
that observed for HSs.40,41 However, the more diffuse (isotropic)
the distribution of preferred orientations in the rotator phase
is, the less the catalytic effect of orientational order is expected
to be, because in the limit of particles approaching a fully
isotropic orientational distribution, hard sphere like behavior
would ensue.

We first examine the trends in DG* data for the group of
shapes in 0.5 r s r 0.667. Shapes similar to TC58 undergo a
first order phase transition from an isotropic to a rotator phase
with a very small degree of global orientational order10 (similar
to that of the isotropic phase). In particular, for s = 0.58 the
preferred orientations are spread over 18 clusters on the unit
sphere and hence the nature of its isotropic–solid phase

Fig. 3 Free-energy barrier-heights, DG*/kBT, for octahedra and hard
spheres43 at different DSS values. Spline interpolations are shown as
solid lines.
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Fig. 4 Nucleation of the Minkowski crystal for octahedra at P* = 11.33. (a) Particle orientation distribution function of near-critical nuclei with
180 o ntr o 200. The distribution is obtained over 20 different configurations. (b) Snapshot of a portion of the nucleus from one of these configurations
with ntr = 194. (c) Histogram of d4 values for Voronoi neighbor pairs in a Minkowski crystal and the disordered phase. Both systems had 2744 particles.
(d) 2D histogram plot of d4 values for Voronoi neighbor pairs vs. the corresponding facet alignment measure values D (D = 1 implies perfect alignment).
The darker the color the higher the number of neighbors belonging to that region. For D 4 2/3 possible orientational alignment is limited, the extent of
which decreases with facet alignment, shown by the presence of a forbidden (empty) region on the top right of the plot (enclosed by dashed lines). Most
particles in the crystal phase are restricted to Do 2/3, as that is the maximum possible value of D for an orientationally aligned pair of particles, implying a
staggered arrangement of the nearest triangular facets.

Fig. 5 Free-energy profiles, DG/kBT, versus ntr obtained using US simula-
tions for TC58, TC75 and TC80 for comparable DSSs E 0.3, corresponding
to P* E 7.60, 9.34 and 10.17, respectively.

Fig. 6 Free-energy barrier-heights, DG*/kBT, of TC58, TC75, TC80 and
HSs43 at different DSS values. Solid lines are cubic interpolations.
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transition would be close to that for HSs, where a globally
translationally ordered and orientationally disordered phase is
nucleated. This is further confirmed by plotting the particle
orientation distribution of nuclei for 187 o ntr o 217 (near the
top of the barrier for P* E 7.60), which is seen in Fig. 8(a) to be
quite diffuse, and by the small value of P4 E 0.07 (the snapshot
of a ntr = 209 near-critical nucleus is shown in Fig. 8(b)). Such
results are also consistent with the TC58 having the smallest
asphericity among all shapes considered here.10 In compari-
son, the critical nuclei of CO and TO have higher values for
P4 E 0.1 and 0.15 respectively (associated with 6 preferred
clusters, the lower value in CO implying a more ‘diffuse’
clustering). Thus, it is expected that the catalytic effect of
orientational order will be weaker in the case of TC58 and thus
its nucleation barriers will be higher than those for CO and TO.
Thus, the strength of the local orientational order correlates
with lower nucleation barrier heights.

We now consider the second group of shapes with s = 0.75
and 0.80. The rotator phases of TC75 and TC80 are termed
high-cubic plastic crystal phases,10 as they have non-negligible
global orientational order. Similar orientational order is also
observed for nuclei near the top of the barrier for both TC75

and TC80, which is also related to that observed in the
Minkowski lattice of perfect octahedra. As shown for TC75 at
P* = 9.34 and TC80 at P* = 10.17 in Fig. 8(c) and (d), respec-
tively, the orientation distributions of these nuclei show an
inhomogeneous distribution with weak clustering in different
regions, with TC75 exhibiting more scattered clusters com-
pared to TC80. This clustering, however, is stronger than that
of TO as indicated by the moderate P4 values of 0.39 and 0.41
for TC75 and TC80 respectively. Snapshots of a portion of the
near-critical nucleus for TC75 (ntr = 62) and TC80 (ntr = 148) are
also shown in Fig. 8(d) and (f) respectively.

If we apply here the same criteria we used to explain trends
in barrier heights for s A [0.5, 0.66], we would predict that the
nucleation barriers for these shapes would be much lower than
those of TO, with TC80 having a lower barrier than TC75. In
contrast, we observe that TC80 has a higher free-energy barrier
than TC75 for comparable DSSs. To understand this discrepancy,
we must explore the spontaneous fluctuations in local order
present in the isotropic phase and how they affect the nucleation
behavior. Similar to the case with the Minkowski crystal in
octahedra, we anticipate that a similar discord between facet-to-
facet matching and orientational order might contribute to the
increase of nucleation barriers. If we consider the distribution

Table 2 Nucleation barriers for truncated cubes using umbrella sampling.
Error bars estimated from the uncertainties in the stitching of US windows
and the determination of profile maximum

Truncation
(s)

Degree of super-
saturation (bDm)

Barrier height
(bDG*)

Critical
nucleus size

0.58 0.31 30.0 � 1.0 210
0.58 0.37 18.5 � 0.5 140
0.58 0.46 8.7 � 0.4 65
0.75 0.27 14.4 � 0.4 85
0.75 0.32 10.7 � 0.5 65
0.75 0.36 7.4 � 0.4 40
0.8 0.28 23.9 � 0.8 140
0.8 0.36 14.3 � 0.6 80
0.8 0.43 8 � 0.5 46

Fig. 7 Free-energy barrier-heights, DG*/kBT, for isotropic to rotator
phase transition for particle shapes with different truncations at DSS =
0.34. Data for CO and TO obtained from prior work.8 For comparison, DG*
for HSs41 at DSS = 0.34 would be B42kBT.

Fig. 8 Particle orientation distribution maps of near-critical nuclei for
(a) TC58 at P* = 7.60, (c) TC75 at P* = 9.34 and (e) TC80 at P* = 10.17.
Each distribution is obtained over 20 different configurations. Snapshots
of a portion of the nucleus are shown in (b) for TC58, (d) for TC75
and (f) for TC80.
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of facet alignment measures for both TC75 and TC80 (Fig. 9),
we clearly observe that the size of the forbidden region on the
top-right is larger for TC80. Moreover, due to a more scattered
distribution of preferred orientations for TC75, more high-D
configurations are explored by the particles in the rotator
phase. Thus, the nucleation barrier is smaller for TC75 than
for TC80 due to a reduced hindrance to nucleation pathways
from states of high facet-to-facet matching. Using a similar line
of reasoning, we predict a monotonous increase in the nuclea-
tion barrier for s 4 0.8 as the lattice structure of the rotator
phase essentially remains the same, while the hindrance asso-
ciated with the forbidden region in the d4–D diagram likely
increases. As a limit, truncated octahedra (s = 0.66) do not have
any significant forbidden region (see the ESI†).

4 Conclusion

In this work, we performed MC simulations to study the nuclea-
tion of ordered phases of selected octahedron-like shapes from the
truncated cube family. The analysis unveils non-trivial trends in
nucleation free energy barriers DG* (as surrogates for describing
nucleation kinetics) as a function of the extent of shape truncation.
We demonstrate that for perfect octahedra the simulated nuclea-
tion barriers for nucleating the Minkowski crystal are much larger
than those for solid-phase nucleation in HSs for comparable
degrees of supersaturation. Our analysis of configurations of
neighboring particles reveals that this transition to a crystal
involves a mismatch between facet-to-facet alignment and local
orientational order. Since facet-to-facet matching increases local
packing entropy, configurations with high degrees of facet-to-
facet alignment occur as spontaneous fluctuations in the iso-
tropic phase, as quantified by a novel facet alignment metric.
However, any two octahedra with near perfect facet matching
will necessarily be orientationally misaligned, and are hence
inconsistent with the high orientational order needed to realize
the Minkowski crystal lattice. Since there is a spontaneous
tendency for a subpopulation of particles in the isotropic phase
to have such high facet alignment, such configurations hinder
the nucleation pathways, resulting in higher values of DG* as
compared to systems where such hindrance is absent (like HSs).

It is the interplay between the tendency for facet alignment
and local orientational order8 among particles that underpins the
attainment of translational-ordered packing and the observed
trends in DG* for particle shapes with varying degrees of
truncation. In essence, local facet alignment may or may not
be conducive to configurations that on average match the stable
ordered structure, hence aiding or deterring the nucleation
process. For all truncations (except for perfect octahedra which
do not form a stable rotator phase), the estimated DG* values for
the isotropic-to-rotator phase transition are smaller than those
for HSs at similar degrees of supersaturation, presumably due to
the beneficial effect of local orientational order as described in
earlier studies.8 We also observe that such a catalytic effect of
local orientational order correlates with the degree of overall
orientational order in the incipient rotator phase (as detected,
e.g., by the clustering of particle orientations along preferential
directions), which leads to a maximum for DG* around TC58,
whose critical nucleus has negligible orientational order. The
near-isotropic particle orientation distribution in the solid
nucleus of TC58 renders its DG* values closer to those of HSs
for comparable degrees of supersaturation. For s 4 0.66, how-
ever, even as the local orientational order increases with increas-
ing truncation, the rotator-nucleation barriers increase. In these
cases, we infer that, instead of facilitating, facet alignment
hinders some of the nucleation pathways that lead to the local
orientational order required to form the solid phase (akin to the
effect in octahedra), leading to higher barriers to nucleation as the
truncation increases (and the octahedron shape is approached).
Despite the complex interplay between orientational and transla-
tional order in the systems studied, we found no evidence for
multi-step non-classical nucleation pathways.

Fig. 9 2D histogram plots for d4 values for Voronoi neighbor pairs vs.
the corresponding facet alignment measure values (D) for (a) s = 0.75 and
(b) s = 0.8, each for DSS E 0.34. The systems contained 2744 particles.
The darker the color the higher the number of neighbors belonging to that
region. Similar to perfect octahedra, we observe that there is a ‘forbidden’
region (the empty area enclosed by dashed lines) on top right, which
implies that high facet alignment can restrict orientational alignment. The
size of the forbidden region is significantly larger for s = 0.8 in comparison
to s = 0.75.
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Future simulation studies could be aimed at calculating
nucleation rates either by complementing DG* data with
the evaluation of kinetic prefactors8,40,41 or by implementing
transition path sampling methods.37 In addition, to further
test the hypotheses regarding the interplay between localized
orientational order and facet alignment, similar analyses can
be performed for other particle geometries. We anticipate that
the effects of localized orientational order and facet-to-facet
matching are general and can help in understanding the
dynamics with which faceted particles self-assemble. However,
the metrics we have used in this study are system specific and
will require suitable extensions and specialization for applica-
tion to systems with particles with different geometries/
symmetries. Finally, the effect on the nucleation kinetics of shape
and size polydispersity, a prevalent feature in experimental
systems, should also be investigated. On the one hand, poly-
dispersity may suppress some nucleation pathways as has been
observed for hard spheres56 (with large extent polydispersities
eventually suppressing crystallization altogether57,58); on the
other hand, in some systems a small degree of polydispersity
could also lessen the facet-alignment-based hindrances that we
have identified in this study.

This study adds to the body of work devoted to unveiling
guidelines to engineer the self-assembly of anisotropic particles.
Our analysis identifies some specific shapes that exhibit favor-
able kinetics for the homogeneous nucleation of translational
order and the microscopic mechanisms that can be responsible
for such behavior. For example, we have elucidated how local
2-particle correlations can aid or hinder collective phase transi-
tion phenomena. Such insights could be used to design fast self-
assembling particles and external fields and additives that could
act as catalysts for heterogeneous nucleation.
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